A new error analysis of a linearized BDF2 Galerkin scheme for Schrödinger equation with cubic nonlinearity

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Huaijun Yang
{"title":"A new error analysis of a linearized BDF2 Galerkin scheme for Schrödinger equation with cubic nonlinearity","authors":"Huaijun Yang","doi":"10.1016/j.camwa.2025.03.025","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, a linearized 2-step backward differentiation formula (BDF2) Galerkin method is proposed and investigated for Schrödinger equation with cubic nonlinearity and unconditionally optimal error estimate in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm is obtained without any time-step restriction. The key to the analysis is to bound the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"188 ","pages":"Pages 83-96"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S089812212500121X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a linearized 2-step backward differentiation formula (BDF2) Galerkin method is proposed and investigated for Schrödinger equation with cubic nonlinearity and unconditionally optimal error estimate in L2-norm is obtained without any time-step restriction. The key to the analysis is to bound the H1-norm between the numerical solution and the Ritz projection of the exact solution by mathematical induction for two cases rather than the error splitting technique used in the previous work. Finally, some numerical results are presented to confirm the theoretical analysis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信