Optimizing capacity expansion modeling with a novel hierarchical clustering and systematic elbow method: A case study on power and storage units in Spain

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Milad Riyahi, Alvaro Gutiérrez Martín
{"title":"Optimizing capacity expansion modeling with a novel hierarchical clustering and systematic elbow method: A case study on power and storage units in Spain","authors":"Milad Riyahi,&nbsp;Alvaro Gutiérrez Martín","doi":"10.1016/j.energy.2025.135788","DOIUrl":null,"url":null,"abstract":"<div><div>To reduce the computational complexity of Capacity Expansion Models, the planning horizon must be simplified into representative time-periods. Also, to accurately model the expansion of power and storage units, these representative time periods must reveal the mid-term dynamics of the planning horizon. In this paper, a novel hierarchical clustering algorithm is presented that retains the chronology of the original data in creating representative time periods. The proposed algorithm, first, determines the optimal number of clusters with a modified elbow method, enhanced with a stopping criterion to prevent it from running uselessly. The designed stopping criterion works based on percentage variance and runtime to determine the number of clusters systematically. Then, the proposed clustering algorithm employs a novel selection strategy based on the Euclidean distance, k-Medoid, and k-Means to determine the most proper representative vector in each cluster. In this way, it reduces the computational time of capacity expansion models while maintaining the accuracy of final answers. To evaluate its performance, the proposed algorithm is tested on energy data, including demand, photovoltaic, wind, and hydrogen generation, across hourly, daily, and weekly time periods. Also, the performance of the proposed clustering algorithm in selecting the number of clusters and clustering is compared with the results of some well-known methods on accuracy and runtime metrics. Numerical results show that the proposed clustering method selects a more appropriate number of clusters in less computational time than other systematic approaches. Moreover, findings on clustering show that the proposed algorithm achieves the highest accuracy on weekly and daily time periods compared to well-known clustering methods, with the error rate of 118 % and 52 %, respectively. Furthermore, implementation results show that the proposed clustering reduces the computational time of capacity expansion models by 84.81 % and 55.91 % on weekly and daily time periods. Additionally, this study assesses the robustness of the clustering methods through a sensitivity analysis, which shows that the proposed algorithm outperforms the others in this metric, as well.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"323 ","pages":"Article 135788"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225014306","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To reduce the computational complexity of Capacity Expansion Models, the planning horizon must be simplified into representative time-periods. Also, to accurately model the expansion of power and storage units, these representative time periods must reveal the mid-term dynamics of the planning horizon. In this paper, a novel hierarchical clustering algorithm is presented that retains the chronology of the original data in creating representative time periods. The proposed algorithm, first, determines the optimal number of clusters with a modified elbow method, enhanced with a stopping criterion to prevent it from running uselessly. The designed stopping criterion works based on percentage variance and runtime to determine the number of clusters systematically. Then, the proposed clustering algorithm employs a novel selection strategy based on the Euclidean distance, k-Medoid, and k-Means to determine the most proper representative vector in each cluster. In this way, it reduces the computational time of capacity expansion models while maintaining the accuracy of final answers. To evaluate its performance, the proposed algorithm is tested on energy data, including demand, photovoltaic, wind, and hydrogen generation, across hourly, daily, and weekly time periods. Also, the performance of the proposed clustering algorithm in selecting the number of clusters and clustering is compared with the results of some well-known methods on accuracy and runtime metrics. Numerical results show that the proposed clustering method selects a more appropriate number of clusters in less computational time than other systematic approaches. Moreover, findings on clustering show that the proposed algorithm achieves the highest accuracy on weekly and daily time periods compared to well-known clustering methods, with the error rate of 118 % and 52 %, respectively. Furthermore, implementation results show that the proposed clustering reduces the computational time of capacity expansion models by 84.81 % and 55.91 % on weekly and daily time periods. Additionally, this study assesses the robustness of the clustering methods through a sensitivity analysis, which shows that the proposed algorithm outperforms the others in this metric, as well.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信