Molten salt induces starch-based carbon aerogels with microsurface wrinkles for high-performance supercapacitors

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Zuozhao Zhai , Junfeng Miao , Yangfan Ji , Hanqing Peng , Bin Ren , Haitao Yu
{"title":"Molten salt induces starch-based carbon aerogels with microsurface wrinkles for high-performance supercapacitors","authors":"Zuozhao Zhai ,&nbsp;Junfeng Miao ,&nbsp;Yangfan Ji ,&nbsp;Hanqing Peng ,&nbsp;Bin Ren ,&nbsp;Haitao Yu","doi":"10.1016/j.energy.2025.135900","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass carbon aerogels are widely used as electrode materials for supercapacitors due to high specific surface area, excellent conductivity, low cost, and environmental friendliness. However, the electrochemical performance of biomass carbon aerogels decrease significantly at high power. Herein, starch-based carbon aerogels with microsurface wrinkles are designed in this study. Starch hydrogels are rapidly prepared by using the property that KOH/KCl can gelatinize starch at room temperature. During high-temperature carbonization, the molten salt that is formed by KOH and KCl gives the starch-based aerogels (KCA-KCl) a porous structures with a high specific surface area (2014 m<sup>2</sup>/g) and microsurface wrinkles. The porous structures and the microsurface wrinkles enables the material to maintain good electrochemical performance at both low and high power. When it is used as electrode material for supercapacitors, the specific capacitance of KCA-KCl is 246.0 F/g at a current density of 1.0 A/g and the capacitance retention of 10 A/g for KCA-KCl is 77.9 % in three electrode system. In two electrode system, KCA-KCl exhibited an energy density of 14.72 Wh/kg at a power density of 0.5 kW/kg and the specific capacitance can maintain 96.33 % after 10,000 cycles. This study provides a feasible strategy to prepare high-performance electrode materials for supercapacitors.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"323 ","pages":"Article 135900"},"PeriodicalIF":9.0000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225015427","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass carbon aerogels are widely used as electrode materials for supercapacitors due to high specific surface area, excellent conductivity, low cost, and environmental friendliness. However, the electrochemical performance of biomass carbon aerogels decrease significantly at high power. Herein, starch-based carbon aerogels with microsurface wrinkles are designed in this study. Starch hydrogels are rapidly prepared by using the property that KOH/KCl can gelatinize starch at room temperature. During high-temperature carbonization, the molten salt that is formed by KOH and KCl gives the starch-based aerogels (KCA-KCl) a porous structures with a high specific surface area (2014 m2/g) and microsurface wrinkles. The porous structures and the microsurface wrinkles enables the material to maintain good electrochemical performance at both low and high power. When it is used as electrode material for supercapacitors, the specific capacitance of KCA-KCl is 246.0 F/g at a current density of 1.0 A/g and the capacitance retention of 10 A/g for KCA-KCl is 77.9 % in three electrode system. In two electrode system, KCA-KCl exhibited an energy density of 14.72 Wh/kg at a power density of 0.5 kW/kg and the specific capacitance can maintain 96.33 % after 10,000 cycles. This study provides a feasible strategy to prepare high-performance electrode materials for supercapacitors.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信