Heat transfer optimization in magnetohydrodynamic buoyancy-driven convective hybrid nanofluid with carbon nanotubes over a slippery rotating porous surface

Q3 Materials Science
Thirupathi Thumma , Surender Ontela , Devarsu Radha Pyari , S.R. Mishra , Subhajit Panda
{"title":"Heat transfer optimization in magnetohydrodynamic buoyancy-driven convective hybrid nanofluid with carbon nanotubes over a slippery rotating porous surface","authors":"Thirupathi Thumma ,&nbsp;Surender Ontela ,&nbsp;Devarsu Radha Pyari ,&nbsp;S.R. Mishra ,&nbsp;Subhajit Panda","doi":"10.1016/j.jciso.2025.100132","DOIUrl":null,"url":null,"abstract":"<div><div>Hybrid nanofluids containing carbon nanotubes possess the potential to augment thermal conductivity and are also employed in heat management applications. These nanofluids combine two kinds of nanostructures (single-wall and multi-wall) and have better energy conversion, cooling, and heat transmission qualities. Because of their tiny size and strength, carbon nanotubes (CNT) are used to increase machinery and components lubrication and boost system energy storage and charging cycle effectiveness of lithium-ion batteries. Therefore, a mathematical model is formulated to study the hydromagnetic CNT hybrid nanofluid mixed convective flow past an elongating porous surface in the occurrence of external heat source, thermal linear radiation, viscous and Joule dissipation. The nanoparticle diameter and interfacial layer effects are explored by incorporating the Gharesim dynamic viscosity model and Hamilton–Crosser thermal conductivity model. The partial differential equations (PDEs) defining the considered fluid flow are transformed into ordinary differential Equations (ODEs) utilizing predefined similarity transformations. The numerical Runge-Kutta method and shooting procedure are employed to obtain the outcomes. The current study establishes that the liquid momentum is controlled for the slip flow, thus with the slip condition, the amount of retardation is much higher in comparison with the no-slip condition, and the temperature of the hybrid nanofluid has been raised by a greater heat source coefficient and radiation factor. Further, the sensitivity and optimization analysis of the heat transmission rate is carried out using RSM with face-centered central composite design model of experiments. Sensitivity analysis reveals that the highest evaluated value 0.006330 of heat transmission rate is identified at the uncoded values <span><math><mrow><msub><mi>ϕ</mi><mtext>SWCNT</mtext></msub><mo>=</mo><mn>0.01</mn><mo>,</mo><msub><mi>ϕ</mi><mtext>MWCNT</mtext></msub><mo>=</mo><mn>0.01</mn><mo>,</mo><mi>N</mi><mo>=</mo><mn>0.10</mn></mrow></math></span> and the least value −0.002590 is identified at the uncoded values of <span><math><mrow><msub><mi>ϕ</mi><mtext>SWCNT</mtext></msub><mo>=</mo><mn>0.01</mn><mo>,</mo><msub><mi>ϕ</mi><mtext>MWCNT</mtext></msub><mo>=</mo><mn>0.03</mn><mo>,</mo><mi>N</mi><mo>=</mo><mn>0.10</mn></mrow></math></span></div></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"18 ","pages":"Article 100132"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X25000054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid nanofluids containing carbon nanotubes possess the potential to augment thermal conductivity and are also employed in heat management applications. These nanofluids combine two kinds of nanostructures (single-wall and multi-wall) and have better energy conversion, cooling, and heat transmission qualities. Because of their tiny size and strength, carbon nanotubes (CNT) are used to increase machinery and components lubrication and boost system energy storage and charging cycle effectiveness of lithium-ion batteries. Therefore, a mathematical model is formulated to study the hydromagnetic CNT hybrid nanofluid mixed convective flow past an elongating porous surface in the occurrence of external heat source, thermal linear radiation, viscous and Joule dissipation. The nanoparticle diameter and interfacial layer effects are explored by incorporating the Gharesim dynamic viscosity model and Hamilton–Crosser thermal conductivity model. The partial differential equations (PDEs) defining the considered fluid flow are transformed into ordinary differential Equations (ODEs) utilizing predefined similarity transformations. The numerical Runge-Kutta method and shooting procedure are employed to obtain the outcomes. The current study establishes that the liquid momentum is controlled for the slip flow, thus with the slip condition, the amount of retardation is much higher in comparison with the no-slip condition, and the temperature of the hybrid nanofluid has been raised by a greater heat source coefficient and radiation factor. Further, the sensitivity and optimization analysis of the heat transmission rate is carried out using RSM with face-centered central composite design model of experiments. Sensitivity analysis reveals that the highest evaluated value 0.006330 of heat transmission rate is identified at the uncoded values ϕSWCNT=0.01,ϕMWCNT=0.01,N=0.10 and the least value −0.002590 is identified at the uncoded values of ϕSWCNT=0.01,ϕMWCNT=0.03,N=0.10

Abstract Image

磁流体动力浮力驱动的碳纳米管对流混合纳米流体在光滑旋转多孔表面上的传热优化
含有碳纳米管的混合纳米流体具有增强导热性的潜力,也被用于热管理应用。这些纳米流体结合了两种纳米结构(单壁和多壁),具有更好的能量转换、冷却和传热性能。由于其微小的尺寸和强度,碳纳米管(CNT)被用于增加机械和部件的润滑,提高锂离子电池的系统能量储存和充电循环效率。为此,建立了一个数学模型,研究了在外加热源、热线性辐射、粘性和焦耳耗散的情况下,液磁碳纳米管混合纳米流体通过细长多孔表面的混合对流流动。结合Gharesim动态黏度模型和Hamilton-Crosser热导率模型,探讨了纳米颗粒直径和界面层效应。利用预定义的相似变换,将定义所考虑流体流动的偏微分方程(PDEs)转换为常微分方程(ode)。采用数值龙格-库塔法和射击程序进行计算。本研究发现,滑移流动控制了液体动量,因此在滑移条件下,滞阻量比无滑移条件下要大得多,并且混合纳米流体的温度被更大的热源系数和辐射因子所提高。在此基础上,采用面心中心复合设计实验模型,对传热率进行了灵敏度分析和优化设计。灵敏度分析表明,在未编码的条件下,传热率的最大值为0.006330;在未编码的条件下,传热率的最小值为- 0.002590;而在未编码的条件下,则为- 0.006330
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JCIS open
JCIS open Physical and Theoretical Chemistry, Colloid and Surface Chemistry, Surfaces, Coatings and Films
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
36 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信