Yu Chen , Zongkang Guo , Jing Li , Kemin Wang , Jin Huang
{"title":"Smart nucleic acid nanodrug delivery system for precision therapeutics","authors":"Yu Chen , Zongkang Guo , Jing Li , Kemin Wang , Jin Huang","doi":"10.1016/j.ccr.2025.216673","DOIUrl":null,"url":null,"abstract":"<div><div>Nucleic acid nano carriers, characterized by programmability, degradability, and high biosafety, have found widespread applications across various fields. With the rapid advancement of nanotechnology, smart nucleic acid nanodrug delivery systems (NDDSs) have demonstrated significant potential for precise and safe therapy. This review summarizes the latest advancements in smart nucleic acid NDDSs, adopting a bottom-up approach. First, we summarize the fundamental functional nucleic acid units essential for realizing smart NDDSs, considering targeting, responsiveness, and therapeutic potential. These units are strategically incorporated into nanocarriers to develop functionally sophisticated smart NDDSs. Accordingly, we outline several construction strategies for self-assembled nanocarriers, such as Y(X)-shaped monomer self-assembly, rolling circle amplification (RCA), hybridization chain reaction (HCR), DNA origami, DNA polyhedron and hybrid assembly. Furthermore, we explore the diverse applications of smart NDDSs in drug delivery, encompassing small molecule drugs, nucleic acid drugs, protein drugs, and co-delivery systems. Finally, we discuss the challenges of clinical translation of smart nucleic acid NDDSs and future research directions. This review aims to deepen researchers' understanding of the design, construction, and potential applications of these systems, thereby advancing their clinical development and enhancing their effectiveness in precision medicine.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"535 ","pages":"Article 216673"},"PeriodicalIF":20.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854525002437","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Nucleic acid nano carriers, characterized by programmability, degradability, and high biosafety, have found widespread applications across various fields. With the rapid advancement of nanotechnology, smart nucleic acid nanodrug delivery systems (NDDSs) have demonstrated significant potential for precise and safe therapy. This review summarizes the latest advancements in smart nucleic acid NDDSs, adopting a bottom-up approach. First, we summarize the fundamental functional nucleic acid units essential for realizing smart NDDSs, considering targeting, responsiveness, and therapeutic potential. These units are strategically incorporated into nanocarriers to develop functionally sophisticated smart NDDSs. Accordingly, we outline several construction strategies for self-assembled nanocarriers, such as Y(X)-shaped monomer self-assembly, rolling circle amplification (RCA), hybridization chain reaction (HCR), DNA origami, DNA polyhedron and hybrid assembly. Furthermore, we explore the diverse applications of smart NDDSs in drug delivery, encompassing small molecule drugs, nucleic acid drugs, protein drugs, and co-delivery systems. Finally, we discuss the challenges of clinical translation of smart nucleic acid NDDSs and future research directions. This review aims to deepen researchers' understanding of the design, construction, and potential applications of these systems, thereby advancing their clinical development and enhancing their effectiveness in precision medicine.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.