Recent updates on cadmium indium sulfide (CdIn2S4 or CIS) photo-catalyst: Synthesis, enhancement strategies and applications

IF 20.3 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Shabnam Sambyal , Anita Sudhaik , Sonu Sonu , Pankaj Raizada , Vishal Chaudhary , Van-Huy Nguyen , Aftab Aslam Parwaz Khan , Chaudhery Mustansar Hussain , Pardeep Singh
{"title":"Recent updates on cadmium indium sulfide (CdIn2S4 or CIS) photo-catalyst: Synthesis, enhancement strategies and applications","authors":"Shabnam Sambyal ,&nbsp;Anita Sudhaik ,&nbsp;Sonu Sonu ,&nbsp;Pankaj Raizada ,&nbsp;Vishal Chaudhary ,&nbsp;Van-Huy Nguyen ,&nbsp;Aftab Aslam Parwaz Khan ,&nbsp;Chaudhery Mustansar Hussain ,&nbsp;Pardeep Singh","doi":"10.1016/j.ccr.2025.216653","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytic technology harnesses solar energy to address the global energy crisis while offering sustainable solutions for environmental applications. Among emerging photocatalysts, Cadmium indium sulfide (CdIn<sub>2</sub>S<sub>4</sub> or CIS) stands out due to its excellent visible light absorption, optimal bandgap, non-toxicity, durability, notable catalytic efficiency, and tunable morphology, making it an appealing candidate for diverse photocatalytic applications. The intrinsic electronic, chemical, physical, and optical properties of CIS nanomaterials are highly tunable, rendering them promising candidates for diverse photocatalytic applications. However, CIS has undergone extensive modifications and optimization to attain excellent photocatalytic activity. The crystalline properties and basic photocatalytic mechanism were deliberated by density functional theory (DFT) calculations. This review provides a comprehensive insight into numerous modification techniques of CIS, including doping, surface defects, metal deposition, carbon loading and heterojunction formation, with effective activity of CIS-based heterojunction. Subsequently, the CIS-based photocatalysts for photocatalytic degradation, photocatalytic reduction of carbon dioxide, hydrogen evolution and hydrogen peroxide production applications from the previous five years will be examined and concluded with an eye toward the future. This review offers an in-depth and critical analysis of these aspects, demonstrating a perspective not previously presented.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"535 ","pages":"Article 216653"},"PeriodicalIF":20.3000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854525002231","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic technology harnesses solar energy to address the global energy crisis while offering sustainable solutions for environmental applications. Among emerging photocatalysts, Cadmium indium sulfide (CdIn2S4 or CIS) stands out due to its excellent visible light absorption, optimal bandgap, non-toxicity, durability, notable catalytic efficiency, and tunable morphology, making it an appealing candidate for diverse photocatalytic applications. The intrinsic electronic, chemical, physical, and optical properties of CIS nanomaterials are highly tunable, rendering them promising candidates for diverse photocatalytic applications. However, CIS has undergone extensive modifications and optimization to attain excellent photocatalytic activity. The crystalline properties and basic photocatalytic mechanism were deliberated by density functional theory (DFT) calculations. This review provides a comprehensive insight into numerous modification techniques of CIS, including doping, surface defects, metal deposition, carbon loading and heterojunction formation, with effective activity of CIS-based heterojunction. Subsequently, the CIS-based photocatalysts for photocatalytic degradation, photocatalytic reduction of carbon dioxide, hydrogen evolution and hydrogen peroxide production applications from the previous five years will be examined and concluded with an eye toward the future. This review offers an in-depth and critical analysis of these aspects, demonstrating a perspective not previously presented.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Coordination Chemistry Reviews
Coordination Chemistry Reviews 化学-无机化学与核化学
CiteScore
34.30
自引率
5.30%
发文量
457
审稿时长
54 days
期刊介绍: Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers. The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信