Peng Wang , Yunfei Liu , Runze Zhu , Lichang Qin , Jie Deng , Zhengbao Yang , Zhaoye Qin , Fulei Chu
{"title":"Dynamic analysis of vibro-impact energy harvester with acoustic black hole","authors":"Peng Wang , Yunfei Liu , Runze Zhu , Lichang Qin , Jie Deng , Zhengbao Yang , Zhaoye Qin , Fulei Chu","doi":"10.1016/j.ijmecsci.2025.110193","DOIUrl":null,"url":null,"abstract":"<div><div>In order to improve the energy harvesting efficiency of acoustic black hole (ABH) structures under low-frequency excitation, this paper proposed a vibro-impact energy harvester, which can greatly improve the energy output through collision under such conditions. The equations of motion are established by using the Bernoulli-Euler beam theory and Rayleigh-Ritz method. Subsequently, the nonlinear impact force and contact stiffness can be gained by the Hertz contact theory. The Chebyshev polynomials of the first kind are employed to form the mode shape functions. The natural frequency and mode shape are obtained by solving the eigenvalue problem, and the vibration responses under base excitation and collision are calculated by the Duhamel integration and time-stepping iteration method. Finally, the energy output of the system is obtained using the piezoelectric theory. By comparing with the experimental results, the proposed method can accurately solve the vibration response and energy output of the piezoelectric cantilever beam under continuous impact. The advantages and reasons of ABH beam in energy harvesting compared with uniform beam and stepped beam are analyzed by numerical calculation. The results show that the pasting position of piezoelectric sheet, external resistance, impact distance, impact position, excitation frequency and excitation amplitude play important roles on the energy output of the system.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"291 ","pages":"Article 110193"},"PeriodicalIF":7.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740325002796","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In order to improve the energy harvesting efficiency of acoustic black hole (ABH) structures under low-frequency excitation, this paper proposed a vibro-impact energy harvester, which can greatly improve the energy output through collision under such conditions. The equations of motion are established by using the Bernoulli-Euler beam theory and Rayleigh-Ritz method. Subsequently, the nonlinear impact force and contact stiffness can be gained by the Hertz contact theory. The Chebyshev polynomials of the first kind are employed to form the mode shape functions. The natural frequency and mode shape are obtained by solving the eigenvalue problem, and the vibration responses under base excitation and collision are calculated by the Duhamel integration and time-stepping iteration method. Finally, the energy output of the system is obtained using the piezoelectric theory. By comparing with the experimental results, the proposed method can accurately solve the vibration response and energy output of the piezoelectric cantilever beam under continuous impact. The advantages and reasons of ABH beam in energy harvesting compared with uniform beam and stepped beam are analyzed by numerical calculation. The results show that the pasting position of piezoelectric sheet, external resistance, impact distance, impact position, excitation frequency and excitation amplitude play important roles on the energy output of the system.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.