Mobility and bio-accessibility of available phosphorus in sewage sludge: Influencing mechanism of hydrothermal pretreatment and incineration

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING
Minghao Jin, Huan Liu, Hongping Deng, Hong Yao
{"title":"Mobility and bio-accessibility of available phosphorus in sewage sludge: Influencing mechanism of hydrothermal pretreatment and incineration","authors":"Minghao Jin,&nbsp;Huan Liu,&nbsp;Hongping Deng,&nbsp;Hong Yao","doi":"10.1016/j.biortech.2025.132429","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate assessment and enhancement of phosphorus (P) availability are critical for land application of sewage sludge and its thermal-treated products. By simulating different functioning pathways of P in soil, a novel multivariable scheme was developed to evaluate P availability from the perspective of mobility and bio-accessibility, then was applied to investigate the effects of hydrothermal pretreatment (HT), carbonaceous skeleton-assisted HT (CSkel-HT), and incineration on this topic. Sludge contained predominantly slow-release and microbial-available P (&gt;50.0 % of total P). HT and incineration reduced available P through filtrate discharge, organic-P decomposition, and Fe/Al-P volatilization. Surprisingly, CSkel-HT addition promoted soluble Ca/MgHPO<sub>4</sub> and thermal-stable Fe/AlPO<sub>4</sub> formation under acidic conditions, which not only retained the slow-release and microbial-available P in hydrochar and ash, but also increased the rapid-available and plant-available P contents by 25.0 % and 300.0 %. Our scheme provided more informative insights than traditional single-index methods, and revealed the enhancing mechanism of CSkel-HT on P availability.</div></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":"428 ","pages":"Article 132429"},"PeriodicalIF":9.7000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852425003955","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate assessment and enhancement of phosphorus (P) availability are critical for land application of sewage sludge and its thermal-treated products. By simulating different functioning pathways of P in soil, a novel multivariable scheme was developed to evaluate P availability from the perspective of mobility and bio-accessibility, then was applied to investigate the effects of hydrothermal pretreatment (HT), carbonaceous skeleton-assisted HT (CSkel-HT), and incineration on this topic. Sludge contained predominantly slow-release and microbial-available P (>50.0 % of total P). HT and incineration reduced available P through filtrate discharge, organic-P decomposition, and Fe/Al-P volatilization. Surprisingly, CSkel-HT addition promoted soluble Ca/MgHPO4 and thermal-stable Fe/AlPO4 formation under acidic conditions, which not only retained the slow-release and microbial-available P in hydrochar and ash, but also increased the rapid-available and plant-available P contents by 25.0 % and 300.0 %. Our scheme provided more informative insights than traditional single-index methods, and revealed the enhancing mechanism of CSkel-HT on P availability.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信