{"title":"ESG-KIBERT: A new paradigm in ESG evaluation using NLP and industry-specific customization","authors":"Haein Lee , Jang Hyun Kim , Hae Sun Jung","doi":"10.1016/j.dss.2025.114440","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a significant advancement in Environmental, Social, Governance (ESG) evaluation by addressing critical gaps in transparency, consistency, and industry-specific relevance. The ESG-Keyword integrated bidirectional encoder representations from transformers (ESG-KIBERT) model, developed using advanced natural language processing (NLP) techniques, enhances ESG classification performance and sets a new standard for automated ESG analysis. With robust performance metrics, it supports reliable and consistent assessments across industries. Additionally, incorporating Sustainability Accounting Standards Board's materiality map offers a customized evaluation framework that accounts for industry-specific factors affecting corporate sustainability. Furthermore, the integration of sentiment analysis enriches ESG evaluations by capturing market and investor perceptions, contributing to a more transparent assessment. This study offers a comprehensive, standardized ESG evaluation framework that improves both the methodological rigor and practical utility of corporate sustainability assessments, enabling more informed decision-making for companies, investors and policymakers.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"193 ","pages":"Article 114440"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625000417","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a significant advancement in Environmental, Social, Governance (ESG) evaluation by addressing critical gaps in transparency, consistency, and industry-specific relevance. The ESG-Keyword integrated bidirectional encoder representations from transformers (ESG-KIBERT) model, developed using advanced natural language processing (NLP) techniques, enhances ESG classification performance and sets a new standard for automated ESG analysis. With robust performance metrics, it supports reliable and consistent assessments across industries. Additionally, incorporating Sustainability Accounting Standards Board's materiality map offers a customized evaluation framework that accounts for industry-specific factors affecting corporate sustainability. Furthermore, the integration of sentiment analysis enriches ESG evaluations by capturing market and investor perceptions, contributing to a more transparent assessment. This study offers a comprehensive, standardized ESG evaluation framework that improves both the methodological rigor and practical utility of corporate sustainability assessments, enabling more informed decision-making for companies, investors and policymakers.
期刊介绍:
The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).