ESG-KIBERT: A new paradigm in ESG evaluation using NLP and industry-specific customization

IF 6.7 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haein Lee , Jang Hyun Kim , Hae Sun Jung
{"title":"ESG-KIBERT: A new paradigm in ESG evaluation using NLP and industry-specific customization","authors":"Haein Lee ,&nbsp;Jang Hyun Kim ,&nbsp;Hae Sun Jung","doi":"10.1016/j.dss.2025.114440","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a significant advancement in Environmental, Social, Governance (ESG) evaluation by addressing critical gaps in transparency, consistency, and industry-specific relevance. The ESG-Keyword integrated bidirectional encoder representations from transformers (ESG-KIBERT) model, developed using advanced natural language processing (NLP) techniques, enhances ESG classification performance and sets a new standard for automated ESG analysis. With robust performance metrics, it supports reliable and consistent assessments across industries. Additionally, incorporating Sustainability Accounting Standards Board's materiality map offers a customized evaluation framework that accounts for industry-specific factors affecting corporate sustainability. Furthermore, the integration of sentiment analysis enriches ESG evaluations by capturing market and investor perceptions, contributing to a more transparent assessment. This study offers a comprehensive, standardized ESG evaluation framework that improves both the methodological rigor and practical utility of corporate sustainability assessments, enabling more informed decision-making for companies, investors and policymakers.</div></div>","PeriodicalId":55181,"journal":{"name":"Decision Support Systems","volume":"193 ","pages":"Article 114440"},"PeriodicalIF":6.7000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Support Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167923625000417","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a significant advancement in Environmental, Social, Governance (ESG) evaluation by addressing critical gaps in transparency, consistency, and industry-specific relevance. The ESG-Keyword integrated bidirectional encoder representations from transformers (ESG-KIBERT) model, developed using advanced natural language processing (NLP) techniques, enhances ESG classification performance and sets a new standard for automated ESG analysis. With robust performance metrics, it supports reliable and consistent assessments across industries. Additionally, incorporating Sustainability Accounting Standards Board's materiality map offers a customized evaluation framework that accounts for industry-specific factors affecting corporate sustainability. Furthermore, the integration of sentiment analysis enriches ESG evaluations by capturing market and investor perceptions, contributing to a more transparent assessment. This study offers a comprehensive, standardized ESG evaluation framework that improves both the methodological rigor and practical utility of corporate sustainability assessments, enabling more informed decision-making for companies, investors and policymakers.
ESG- kibert:使用自然语言处理和特定行业定制的ESG评估新范例
本研究通过解决透明度、一致性和行业特定相关性方面的关键差距,在环境、社会、治理(ESG)评估方面取得了重大进展。利用先进的自然语言处理(NLP)技术开发的ESG-关键词集成了变压器双向编码器表示(ESG- kibert)模型,提高了ESG分类性能,并为自动化ESG分析设定了新标准。凭借强大的性能指标,它支持跨行业的可靠和一致的评估。此外,结合可持续发展会计准则委员会的重要性图提供了一个定制的评估框架,该框架考虑了影响企业可持续发展的行业特定因素。此外,情绪分析的整合通过捕捉市场和投资者的看法,丰富了ESG评估,有助于更透明的评估。本研究提供了一个全面、标准化的ESG评估框架,提高了企业可持续发展评估方法的严谨性和实际效用,为企业、投资者和决策者提供了更明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decision Support Systems
Decision Support Systems 工程技术-计算机:人工智能
CiteScore
14.70
自引率
6.70%
发文量
119
审稿时长
13 months
期刊介绍: The common thread of articles published in Decision Support Systems is their relevance to theoretical and technical issues in the support of enhanced decision making. The areas addressed may include foundations, functionality, interfaces, implementation, impacts, and evaluation of decision support systems (DSSs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信