Zhe Zhao , Yufei Zhang , Jie Li , Siyuan Huang , Guosheng Xing , Kai Zhang , Xinlong Ma , Xinge Zhang , Yingze Zhang
{"title":"A remotely controlled nanotherapeutic with immunomodulatory property for MRSA-induced bone infection","authors":"Zhe Zhao , Yufei Zhang , Jie Li , Siyuan Huang , Guosheng Xing , Kai Zhang , Xinlong Ma , Xinge Zhang , Yingze Zhang","doi":"10.1016/j.biomaterials.2025.123298","DOIUrl":null,"url":null,"abstract":"<div><div>Osteomyelitis is a deep bone tissue infection caused by pathogenic microorganisms, with the primary pathogen being methicillin-resistant <em>Staphylococcus aureus</em> (MRSA). Due to the tendency of the infection site to form biofilms that shield drugs and immune cells to kill bacteria, combined with the severe local inflammatory response causing bone tissue destruction, the treatment of osteomyelitis poses a significant challenge. Herein, we developed a remotely controlled nanotherapeutic (TLBA) with immunomodulatory to treat MRSA-induced osteomyelitis. TLBA, combined with baicalin and gold nanorods, is positively charged to actively target and penetrate biofilms. Near-infrared light (808 nm) triggers spatiotemporal, controllable drug release, while bacteria are eliminated through synergistic interaction of non-antibiotic drugs and photothermal therapy, enhancing bactericidal efficiency and minimizing drug resistance. TLBA eliminated nearly 100 % of planktonic bacteria and dispersed 90 % of biofilms under NIR light stimulation. In MRSA-induced osteomyelitis rat models, laser irradiation raised the infection site temperature to 50 °C, effectively eradicating bacteria, promoting M2 macrophage transformation, inhibiting bone inflammation, curbing bone destruction, and fostering bone tissue repair. In summary, TLBA proposes a more comprehensive treatment strategy for the two characteristic pathological changes of bacterial infection and bone tissue damage in osteomyelitis.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"321 ","pages":"Article 123298"},"PeriodicalIF":12.8000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225002170","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Osteomyelitis is a deep bone tissue infection caused by pathogenic microorganisms, with the primary pathogen being methicillin-resistant Staphylococcus aureus (MRSA). Due to the tendency of the infection site to form biofilms that shield drugs and immune cells to kill bacteria, combined with the severe local inflammatory response causing bone tissue destruction, the treatment of osteomyelitis poses a significant challenge. Herein, we developed a remotely controlled nanotherapeutic (TLBA) with immunomodulatory to treat MRSA-induced osteomyelitis. TLBA, combined with baicalin and gold nanorods, is positively charged to actively target and penetrate biofilms. Near-infrared light (808 nm) triggers spatiotemporal, controllable drug release, while bacteria are eliminated through synergistic interaction of non-antibiotic drugs and photothermal therapy, enhancing bactericidal efficiency and minimizing drug resistance. TLBA eliminated nearly 100 % of planktonic bacteria and dispersed 90 % of biofilms under NIR light stimulation. In MRSA-induced osteomyelitis rat models, laser irradiation raised the infection site temperature to 50 °C, effectively eradicating bacteria, promoting M2 macrophage transformation, inhibiting bone inflammation, curbing bone destruction, and fostering bone tissue repair. In summary, TLBA proposes a more comprehensive treatment strategy for the two characteristic pathological changes of bacterial infection and bone tissue damage in osteomyelitis.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.