Influence of lacquer sanding sealer treatment on the properties of bamboo waste particleboards for sustainable handicrafts

Chris Johnniel France Rana, Aralyn L. Quintos-Cortiguerra, Alexis B. Dorado, Juanito P. Jimenez, Jr
{"title":"Influence of lacquer sanding sealer treatment on the properties of bamboo waste particleboards for sustainable handicrafts","authors":"Chris Johnniel France Rana,&nbsp;Aralyn L. Quintos-Cortiguerra,&nbsp;Alexis B. Dorado,&nbsp;Juanito P. Jimenez, Jr","doi":"10.1016/j.bamboo.2025.100158","DOIUrl":null,"url":null,"abstract":"<div><div>Bamboo processing wastes from small to medium-sized factories are generated in substantial quantities. To maximize its utilization, this study explored the conversion of bamboo wastes into bamboo waste particleboard (BWPB) and the effects of a lacquer sanding sealer (LSS) soaking on its properties. BWPB samples were soaked in LSS for 5, 15 and 30 minutes, and their physico-mechanical properties, namely thickness swelling (TS), water absorption (WA), modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB) strength, moisture content (MC) and board density (BD), were evaluated based on PNS/ISO 16893:2017 and related literature. Microscopy and Fourier Transform Infrared (FTIR) spectroscopy were conducted to assess the penetration and effectiveness of the LSS treatment. Both the control (unsoaked) and the LSS-soaked BWPB were classified as medium-density. The MC of the LSS-soaked samples was significantly lower than that of the unsoaked boards. LSS-soaked BWPB also increased in weight, with longer soaking times resulting in greater weight gain. The LSS treatment significantly improved mechanical properties, reducing TS and WA while enhancing MOR, MOE and IB strength. Microscopy and FTIR confirmed greater LSS absorption with extended soaking times. These findings indicate that LSS-soaked BWPB met P-GP MR2 standards in the PNS/ISO 16893:2017, making it suitable for general-purpose applications. Additionally, bio-inspired product prototypes were developed to demonstrate the enhanced particleboard’s aesthetic and functional potential.</div></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":"11 ","pages":"Article 100158"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139125000370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bamboo processing wastes from small to medium-sized factories are generated in substantial quantities. To maximize its utilization, this study explored the conversion of bamboo wastes into bamboo waste particleboard (BWPB) and the effects of a lacquer sanding sealer (LSS) soaking on its properties. BWPB samples were soaked in LSS for 5, 15 and 30 minutes, and their physico-mechanical properties, namely thickness swelling (TS), water absorption (WA), modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB) strength, moisture content (MC) and board density (BD), were evaluated based on PNS/ISO 16893:2017 and related literature. Microscopy and Fourier Transform Infrared (FTIR) spectroscopy were conducted to assess the penetration and effectiveness of the LSS treatment. Both the control (unsoaked) and the LSS-soaked BWPB were classified as medium-density. The MC of the LSS-soaked samples was significantly lower than that of the unsoaked boards. LSS-soaked BWPB also increased in weight, with longer soaking times resulting in greater weight gain. The LSS treatment significantly improved mechanical properties, reducing TS and WA while enhancing MOR, MOE and IB strength. Microscopy and FTIR confirmed greater LSS absorption with extended soaking times. These findings indicate that LSS-soaked BWPB met P-GP MR2 standards in the PNS/ISO 16893:2017, making it suitable for general-purpose applications. Additionally, bio-inspired product prototypes were developed to demonstrate the enhanced particleboard’s aesthetic and functional potential.
漆砂封口剂处理对竹制废刨花板性能的影响
中小工厂的竹材加工废弃物产生了大量的废弃物。为了最大限度地利用竹材废弃物,本研究探讨了竹材废弃物转化为竹材刨花板(BWPB),以及漆砂密封剂(LSS)浸泡对竹材刨花板性能的影响。将BWPB样品在LSS中浸泡5、15和30 分钟,并根据PNS/ISO 16893:2017及相关文献评估其物理力学性能,即厚度膨胀(TS)、吸水率(WA)、断裂模量(MOR)、弹性模量(MOE)、内粘结强度(IB)、含水率(MC)和板密度(BD)。显微镜和傅里叶变换红外光谱(FTIR)评估了LSS治疗的穿透性和有效性。对照(未浸泡)和lss浸泡的BWPB均为中密度。lss浸泡样品的MC显著低于未浸泡样品的MC。lss浸泡的BWPB也增加了重量,浸泡时间越长,重量增加越多。LSS处理显著改善了材料的力学性能,降低了TS和WA,同时提高了MOR、MOE和IB强度。显微镜和FTIR证实,随着浸泡时间的延长,LSS吸收增加。这些研究结果表明,lss浸泡的BWPB符合PNS/ISO 16893:2017中的P-GP MR2标准,适用于通用应用。此外,开发了仿生产品原型,以展示增强刨花板的美学和功能潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信