{"title":"Nitrogen fertilization dynamics on one-year-old Dendrocalamus asper (Schult. & Schult.f.) Backer bamboo in Florida","authors":"Cyrus J. Januarie, Davie M. Kadyampakeni","doi":"10.1016/j.bamboo.2025.100150","DOIUrl":null,"url":null,"abstract":"<div><div>Bamboo is widely used for food, timber, furniture, building materials and making paper. With the growing demand for bamboo shoots in the United States, many growers are exploring bamboo production. In Florida, very few studies on bamboo fertilization exist from different regions and agroecologies. This study evaluated nitrogen (N) fertilization effects on young bamboo plants under greenhouse conditions. One-year-old <em>Dendrocalamus asper</em> bamboo plants were grown in 38 L pots and subjected to N rates of 0, 112, 224, and 336 kg N ha<sup>−1</sup>. Growth, chlorophyll content and shoot production were measured biweekly for five months in two growing seasons. Soil and tissue analyses were conducted before and after the study. Growth, chlorophyll content and shoot production were comparable across treatments, though chlorophyll content plateaued at higher N rates. Nutrient use efficiency was maximized at moderate N levels (112–224 kg N ha<sup>−1</sup>), peaking at 224 kg N ha<sup>−1</sup> for total biomass and overall growth while lower N rates sufficed for parameters such as culm production. No significant interaction between year and treatment was observed for biomass, indicating consistent N effects across the years. A model showed significant increases in biomass and N accumulation which peaked at 224 kg N ha<sup>−1</sup> and declined with further N application. In conclusion, N application at around 224 kg N ha<sup>−1</sup> may be optimal for bamboo growth and nutrient use efficiency in young bamboo plants under greenhouse conditions, although field studies are needed for validation.</div></div>","PeriodicalId":100040,"journal":{"name":"Advances in Bamboo Science","volume":"11 ","pages":"Article 100150"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bamboo Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773139125000291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Bamboo is widely used for food, timber, furniture, building materials and making paper. With the growing demand for bamboo shoots in the United States, many growers are exploring bamboo production. In Florida, very few studies on bamboo fertilization exist from different regions and agroecologies. This study evaluated nitrogen (N) fertilization effects on young bamboo plants under greenhouse conditions. One-year-old Dendrocalamus asper bamboo plants were grown in 38 L pots and subjected to N rates of 0, 112, 224, and 336 kg N ha−1. Growth, chlorophyll content and shoot production were measured biweekly for five months in two growing seasons. Soil and tissue analyses were conducted before and after the study. Growth, chlorophyll content and shoot production were comparable across treatments, though chlorophyll content plateaued at higher N rates. Nutrient use efficiency was maximized at moderate N levels (112–224 kg N ha−1), peaking at 224 kg N ha−1 for total biomass and overall growth while lower N rates sufficed for parameters such as culm production. No significant interaction between year and treatment was observed for biomass, indicating consistent N effects across the years. A model showed significant increases in biomass and N accumulation which peaked at 224 kg N ha−1 and declined with further N application. In conclusion, N application at around 224 kg N ha−1 may be optimal for bamboo growth and nutrient use efficiency in young bamboo plants under greenhouse conditions, although field studies are needed for validation.