Anna Christina Böhringer, Carmen Constanze Sievers, Maximilian Burghaus, Hans Merzendorfer
{"title":"A G-protein coupled receptor is involved in the DUOX pathway in Tribolium castaneum","authors":"Anna Christina Böhringer, Carmen Constanze Sievers, Maximilian Burghaus, Hans Merzendorfer","doi":"10.1016/j.ibmb.2025.104306","DOIUrl":null,"url":null,"abstract":"<div><div>Activation of the dual oxidase (DUOX) pathway is an important intestinal defense mechanism against enteric infection triggering the formation of radical oxygen species by stimulating DUOX enzyme activity and/or gene expression. In insects, several studies have suggested that uracil released by pathogenic bacteria functions as a major trigger molecule for the activation of DUOX, which leads to the formation of antimicrobial hypochlorous acid (HOCl). While the recognition of pathogen-associated molecular patterns of microbes by pattern recognition receptors is well understood, the detection of uracil is still elusive. It has been postulated that a G-protein coupled receptor (GPCR) binds the pyrimidine uracil, which activates PLCβ signalling and further downstream events. So far, no pyrimidinergic receptor has been identified in insects, particularly none that binds uracil nucleotides or sugar derivatives. To identify potential candidates for insect pyrimidine receptors, we used a human P2Y<sub>4</sub> receptor as a template to screen the <em>Tribolium castaneum</em> reference proteome. Four promising receptor candidates were identified, of which two were analyzed using RNA interference to determine their influence on uracil-induced <em>TcDUOX</em> expression, HOCl formation and development in control larvae and larvae that were challenged with the enteric pathogen <em>Bacillus thuringiensis</em>. Silencing <em>TcGPCR41</em> resulted in a loss of uracil-induced <em>TcDUOX</em> expression and HOCl formation. Furthermore, the development of challenged larvae was affected in a manner like that observed in a <em>TcDUOX</em> knockdown. We conclude that the identified receptor may play a role in the uracil-dependent activation of the DUOX-pathways.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"180 ","pages":"Article 104306"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174825000505","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Activation of the dual oxidase (DUOX) pathway is an important intestinal defense mechanism against enteric infection triggering the formation of radical oxygen species by stimulating DUOX enzyme activity and/or gene expression. In insects, several studies have suggested that uracil released by pathogenic bacteria functions as a major trigger molecule for the activation of DUOX, which leads to the formation of antimicrobial hypochlorous acid (HOCl). While the recognition of pathogen-associated molecular patterns of microbes by pattern recognition receptors is well understood, the detection of uracil is still elusive. It has been postulated that a G-protein coupled receptor (GPCR) binds the pyrimidine uracil, which activates PLCβ signalling and further downstream events. So far, no pyrimidinergic receptor has been identified in insects, particularly none that binds uracil nucleotides or sugar derivatives. To identify potential candidates for insect pyrimidine receptors, we used a human P2Y4 receptor as a template to screen the Tribolium castaneum reference proteome. Four promising receptor candidates were identified, of which two were analyzed using RNA interference to determine their influence on uracil-induced TcDUOX expression, HOCl formation and development in control larvae and larvae that were challenged with the enteric pathogen Bacillus thuringiensis. Silencing TcGPCR41 resulted in a loss of uracil-induced TcDUOX expression and HOCl formation. Furthermore, the development of challenged larvae was affected in a manner like that observed in a TcDUOX knockdown. We conclude that the identified receptor may play a role in the uracil-dependent activation of the DUOX-pathways.
期刊介绍:
This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.