Enhancing root-zone soil moisture estimation using Richards' equation and dynamic surface soil moisture data

IF 5.9 1区 农林科学 Q1 AGRONOMY
Xizhuoma Zha , Wenbin Zhu , Yan Han , Aifeng Lv
{"title":"Enhancing root-zone soil moisture estimation using Richards' equation and dynamic surface soil moisture data","authors":"Xizhuoma Zha ,&nbsp;Wenbin Zhu ,&nbsp;Yan Han ,&nbsp;Aifeng Lv","doi":"10.1016/j.agwat.2025.109460","DOIUrl":null,"url":null,"abstract":"<div><div>Root-zone soil moisture (RZSM) is a critical variable for accurately modeling hydrological and ecological processes, but its monitoring is challenging due to the spatial and temporal variability at watershed scales. Richards' equation is a fundamental physical equation that accurately captures the dynamics of soil moisture transport in the root zone. However, due to its high sensitivity to input parameters, its application in large-scale spatial domains remains a significant challenge, particularly in regions with sparse meteorological data. This study addresses these challenges by proposing an innovative approach to estimating root-zone soil moisture by integrating dynamic surface soil moisture data into Richards' equation (SSMRE model). This approach encapsulates soil-atmosphere interactions using near-surface soil moisture, simplifying the computational framework and expanding the applicability of Richards' equation to broader spatial scales. Using the Lightning River Basin as a case study, simulations of different vegetation types and boundary conditions indicate that the correlation coefficient (<em>R</em>) for root zone soil moisture(50 cm) is generally greater than 0.7,SSMRE can accurately simulate root zone soil moisture under various lower boundary conditions and vegetation types. The HYDRUS-1D model, which is widely applied, typically uses atmospheric boundary conditions to simulate soil water movement under atmospheric influence. Comparative analysis of the HYDRUS-1D and SSMRE models against site-measured data reveals that for HYDRUS-1D, the correlation coefficients (<em>R</em>) across 5 cm,10 cm,20 cm,50 cm are 0.654, 0.621, 0.549 and 0.48, with root mean square errors (<em>RMSE</em>) of 0.03, 0.03, 0.03, and 0.04, respectively. The SSMRE model exhibits <em>R</em> values of 0.9, 0.85, 0.74, and 0.72, with <em>RMSE</em> values of 0.04, 0.02, 0.04, and 0.05. Demonstrating that our method provides improved accuracy in root-zone soil moisture simulations. The application of the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm significantly enhances the model's accuracy. This research establishes a theoretical foundation for estimating multi-layer soil moisture over large spatial scales by integrating satellite-derived near-surface soil moisture data with Richards' equation.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"312 ","pages":"Article 109460"},"PeriodicalIF":5.9000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037837742500174X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Root-zone soil moisture (RZSM) is a critical variable for accurately modeling hydrological and ecological processes, but its monitoring is challenging due to the spatial and temporal variability at watershed scales. Richards' equation is a fundamental physical equation that accurately captures the dynamics of soil moisture transport in the root zone. However, due to its high sensitivity to input parameters, its application in large-scale spatial domains remains a significant challenge, particularly in regions with sparse meteorological data. This study addresses these challenges by proposing an innovative approach to estimating root-zone soil moisture by integrating dynamic surface soil moisture data into Richards' equation (SSMRE model). This approach encapsulates soil-atmosphere interactions using near-surface soil moisture, simplifying the computational framework and expanding the applicability of Richards' equation to broader spatial scales. Using the Lightning River Basin as a case study, simulations of different vegetation types and boundary conditions indicate that the correlation coefficient (R) for root zone soil moisture(50 cm) is generally greater than 0.7,SSMRE can accurately simulate root zone soil moisture under various lower boundary conditions and vegetation types. The HYDRUS-1D model, which is widely applied, typically uses atmospheric boundary conditions to simulate soil water movement under atmospheric influence. Comparative analysis of the HYDRUS-1D and SSMRE models against site-measured data reveals that for HYDRUS-1D, the correlation coefficients (R) across 5 cm,10 cm,20 cm,50 cm are 0.654, 0.621, 0.549 and 0.48, with root mean square errors (RMSE) of 0.03, 0.03, 0.03, and 0.04, respectively. The SSMRE model exhibits R values of 0.9, 0.85, 0.74, and 0.72, with RMSE values of 0.04, 0.02, 0.04, and 0.05. Demonstrating that our method provides improved accuracy in root-zone soil moisture simulations. The application of the Shuffled Complex Evolution-University of Arizona (SCE-UA) algorithm significantly enhances the model's accuracy. This research establishes a theoretical foundation for estimating multi-layer soil moisture over large spatial scales by integrating satellite-derived near-surface soil moisture data with Richards' equation.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信