Development of a representative transient cycle for evaluating real driving emissions of heavy-duty diesel engines

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Gengfei Liu , Xiuhua Yang , Bin Pei , Huaimin Xu , Binyang Wu , Wanhua Su
{"title":"Development of a representative transient cycle for evaluating real driving emissions of heavy-duty diesel engines","authors":"Gengfei Liu ,&nbsp;Xiuhua Yang ,&nbsp;Bin Pei ,&nbsp;Huaimin Xu ,&nbsp;Binyang Wu ,&nbsp;Wanhua Su","doi":"10.1016/j.apr.2025.102520","DOIUrl":null,"url":null,"abstract":"<div><div>Accurately assessing real driving emissions is crucial for effectively controlling vehicle exhaust pollution. However, significant discrepancies exist between the World Harmonized Transient Cycle (WHTC) used for emission certification and real driving conditions of heavy-duty diesel engines in China. To address this issue, this study introduces a two-step method for developing representative transient cycles. In the first step, short strokes are classified using the k-means clustering algorithm with adaptive particle swarm optimization to identify key kinematic scenarios for heavy-duty diesel vehicles. The Markov Chain Monte Carlo method is then applied to simulate driving patterns for these scenarios, thereby constructing the heavy-duty real driving cycle (HRDC). In the second step, the heavy-duty real transient cycle (HRTC) for diesel engines is generated by integrating typical transmission system and gear matching rules based on the HRDC. The emission test results indicate that compared to WHTC, NOx, PM, and PN emissions under HRTC increased by 36.69 %, 4.57 %, and 78.73 %, respectively. Additionally, transient soot emissions under HRTC are 155.74 % higher than those predicted by steady-state interpolation. The primary factor leading to transient soot emission deterioration is a sudden torque increase exceeding 40 %/s, observed during idle or motoring conditions. These findings provide a solid foundation for reliably evaluating the road emission performance of heavy-duty diesel vehicles.</div></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"16 7","pages":"Article 102520"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104225001229","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately assessing real driving emissions is crucial for effectively controlling vehicle exhaust pollution. However, significant discrepancies exist between the World Harmonized Transient Cycle (WHTC) used for emission certification and real driving conditions of heavy-duty diesel engines in China. To address this issue, this study introduces a two-step method for developing representative transient cycles. In the first step, short strokes are classified using the k-means clustering algorithm with adaptive particle swarm optimization to identify key kinematic scenarios for heavy-duty diesel vehicles. The Markov Chain Monte Carlo method is then applied to simulate driving patterns for these scenarios, thereby constructing the heavy-duty real driving cycle (HRDC). In the second step, the heavy-duty real transient cycle (HRTC) for diesel engines is generated by integrating typical transmission system and gear matching rules based on the HRDC. The emission test results indicate that compared to WHTC, NOx, PM, and PN emissions under HRTC increased by 36.69 %, 4.57 %, and 78.73 %, respectively. Additionally, transient soot emissions under HRTC are 155.74 % higher than those predicted by steady-state interpolation. The primary factor leading to transient soot emission deterioration is a sudden torque increase exceeding 40 %/s, observed during idle or motoring conditions. These findings provide a solid foundation for reliably evaluating the road emission performance of heavy-duty diesel vehicles.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Pollution Research
Atmospheric Pollution Research ENVIRONMENTAL SCIENCES-
CiteScore
8.30
自引率
6.70%
发文量
256
审稿时长
36 days
期刊介绍: Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信