Erin L. Gray , Samuel E. Potteiger , Trevor D. Brannon , Stuart B. Norton , Jay Cho , Michael D. Annable
{"title":"Per- and polyfluoroalkyl substances (PFAS) mass flux and mass balance at an aqueous film-forming foam release site in semiarid eastern New Mexico, USA","authors":"Erin L. Gray , Samuel E. Potteiger , Trevor D. Brannon , Stuart B. Norton , Jay Cho , Michael D. Annable","doi":"10.1016/j.jconhyd.2025.104550","DOIUrl":null,"url":null,"abstract":"<div><div>Passive flux meters (PFMs) directly measure groundwater chemistry mass flux and Darcy flux, providing insight into contaminant source-zone architecture and transport properties. This study uses PFMs to characterize PFAS flux in groundwater at a semiarid site with a thick (greater than 90-m) unsaturated zone where groundwater has been contaminated with <em>per</em>- and polyfluoroalkyl substances (PFAS) related to the use of aqueous film-forming foam (AFFF) for fire training and fire suppression. PFAS mass discharge (PFAS mass flux integrated over a control plane) in groundwater downgradient from several PFAS release areas is calculated using PFM results. In groundwater downgradient from fire-training areas, total PFAS mass discharge (summed across 14 compounds) was estimated to be between 6.0 and 31 g per day in 2020 and between 5.9 and 23 g per day in 2021. Site-specific documentation, generic information on AFFF properties, and literature values of PFAS concentration in AFFF are used to estimate site-specific PFAS-application rates at fire-training areas. These PFAS-application rates are compared to groundwater PFAS-discharge rates. Results suggest that transformation processes (exact pathways unknown) have led to increased discharge of measured PFAS in groundwater relative to initial AFFF formulations. The mass balance approach has broad applicability as a high-level approach that can provide insight into PFAS transport at AFFF sites.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"272 ","pages":"Article 104550"},"PeriodicalIF":3.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772225000555","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Passive flux meters (PFMs) directly measure groundwater chemistry mass flux and Darcy flux, providing insight into contaminant source-zone architecture and transport properties. This study uses PFMs to characterize PFAS flux in groundwater at a semiarid site with a thick (greater than 90-m) unsaturated zone where groundwater has been contaminated with per- and polyfluoroalkyl substances (PFAS) related to the use of aqueous film-forming foam (AFFF) for fire training and fire suppression. PFAS mass discharge (PFAS mass flux integrated over a control plane) in groundwater downgradient from several PFAS release areas is calculated using PFM results. In groundwater downgradient from fire-training areas, total PFAS mass discharge (summed across 14 compounds) was estimated to be between 6.0 and 31 g per day in 2020 and between 5.9 and 23 g per day in 2021. Site-specific documentation, generic information on AFFF properties, and literature values of PFAS concentration in AFFF are used to estimate site-specific PFAS-application rates at fire-training areas. These PFAS-application rates are compared to groundwater PFAS-discharge rates. Results suggest that transformation processes (exact pathways unknown) have led to increased discharge of measured PFAS in groundwater relative to initial AFFF formulations. The mass balance approach has broad applicability as a high-level approach that can provide insight into PFAS transport at AFFF sites.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.