Poly(aryl piperidine) anion exchange membrane with self-assembled siloxane crosslinked networks for efficient ion separation in alkaline waste treatment via electrodialysis
Yazhen Jiang , Tong Mu , Ning Ding , Yangke Pan , Geting Xu , Junbin Liao , Edison Huixiang Ang , Jiangnan Shen
{"title":"Poly(aryl piperidine) anion exchange membrane with self-assembled siloxane crosslinked networks for efficient ion separation in alkaline waste treatment via electrodialysis","authors":"Yazhen Jiang , Tong Mu , Ning Ding , Yangke Pan , Geting Xu , Junbin Liao , Edison Huixiang Ang , Jiangnan Shen","doi":"10.1016/j.desal.2025.118853","DOIUrl":null,"url":null,"abstract":"<div><div>In electrodialysis technology applications, anion-exchange membranes (AEMs) have great potential in recovering alkali from industrial wastes and are expected to recover alkali from industrial wastes. In this study, a series of AEMs based on polyarylpiperidines crosslinked with varying ratios of siloxanes were synthesized. Compared to the uncrosslinked PBP AEM and commercial Neosepta AHA, biphenylpiperidine-based AEMs (PBP-CPMTS<sub>40</sub> and PBP-CPMTS<sub>60</sub>) demonstrated superior ion flux, alkali separation performance, and economic efficiency due to their optimized water uptake (WU) and ion exchange capacity (IEC). Notably, PBP-CPMTS<sub>60</sub> AEM exhibited optimal water swelling, low membrane resistance (1.98 Ω·cm<sup>2</sup>), and the highest OH<sup>−</sup> conductivity (14.1 mS·cm<sup>−1</sup>) at room temperature. It also demonstrated excellent alkali stability, retaining 89.71 % of its IEC and 85.07 % of its OH<sup>−</sup> conductivity after 1200 h of exposure to 2 M NaOH at 80 °C. During Cl<sup>−</sup> and OH<sup>−</sup> ion separation via electrodialysis, the dilution compartment concentration decreased from 0.40 M to 0.12 M within 180 min, achieving a high current efficiency of 87.21 % and an energy consumption of 2.32 kW·h·kg<sup>−1</sup>. This study presents a rational siloxane crosslinking strategy to mitigate AEM degradation in alkaline environments, offering significant potential for electrodialysis-based alkali concentration application.</div></div>","PeriodicalId":299,"journal":{"name":"Desalination","volume":"608 ","pages":"Article 118853"},"PeriodicalIF":8.3000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Desalination","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011916425003285","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In electrodialysis technology applications, anion-exchange membranes (AEMs) have great potential in recovering alkali from industrial wastes and are expected to recover alkali from industrial wastes. In this study, a series of AEMs based on polyarylpiperidines crosslinked with varying ratios of siloxanes were synthesized. Compared to the uncrosslinked PBP AEM and commercial Neosepta AHA, biphenylpiperidine-based AEMs (PBP-CPMTS40 and PBP-CPMTS60) demonstrated superior ion flux, alkali separation performance, and economic efficiency due to their optimized water uptake (WU) and ion exchange capacity (IEC). Notably, PBP-CPMTS60 AEM exhibited optimal water swelling, low membrane resistance (1.98 Ω·cm2), and the highest OH− conductivity (14.1 mS·cm−1) at room temperature. It also demonstrated excellent alkali stability, retaining 89.71 % of its IEC and 85.07 % of its OH− conductivity after 1200 h of exposure to 2 M NaOH at 80 °C. During Cl− and OH− ion separation via electrodialysis, the dilution compartment concentration decreased from 0.40 M to 0.12 M within 180 min, achieving a high current efficiency of 87.21 % and an energy consumption of 2.32 kW·h·kg−1. This study presents a rational siloxane crosslinking strategy to mitigate AEM degradation in alkaline environments, offering significant potential for electrodialysis-based alkali concentration application.
期刊介绍:
Desalination is a scholarly journal that focuses on the field of desalination materials, processes, and associated technologies. It encompasses a wide range of disciplines and aims to publish exceptional papers in this area.
The journal invites submissions that explicitly revolve around water desalting and its applications to various sources such as seawater, groundwater, and wastewater. It particularly encourages research on diverse desalination methods including thermal, membrane, sorption, and hybrid processes.
By providing a platform for innovative studies, Desalination aims to advance the understanding and development of desalination technologies, promoting sustainable solutions for water scarcity challenges.