{"title":"Two new constant rank theorems","authors":"Qinfeng Li, Lu Xu","doi":"10.1016/j.jfa.2025.110935","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated from one-dimensional rigidity results of entire solutions to Liouville equation, we consider the semilinear equation<span><span><span>(0.1)</span><span><math><mrow><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mrow><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>G</mi><mo>></mo><mn>0</mn><mo>,</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo><</mo><mn>0</mn></math></span> and <span><math><mi>G</mi><msup><mrow><mi>G</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>≤</mo><mi>A</mi><msup><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, with <span><math><mi>A</mi><mo>></mo><mn>0</mn></math></span>. Let <em>u</em> be a smooth convex solution to <span><span>(0.1)</span></span> and <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></math></span> be the <em>k</em>-th elementary symmetric polynomial with respect to <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></math></span>. Under the above conditions, we prove the following two new constant rank theorems:<ul><li><span>(1)</span><span><div>If <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></math></span> has a local minimum, then <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></math></span> has constant rank 1 for <span><math><mi>A</mi><mo>≤</mo><mn>2</mn></math></span>.</div></span></li><li><span>(2)</span><span><div>If <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></math></span> has a local minimum, then <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></math></span> is always zero and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></math></span> must have constant rank <span><math><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> in the domain for <span><math><mi>A</mi><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></math></span>.</div></span></li></ul></div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110935"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500117X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated from one-dimensional rigidity results of entire solutions to Liouville equation, we consider the semilinear equation(0.1)where and , with . Let u be a smooth convex solution to (0.1) and be the k-th elementary symmetric polynomial with respect to . Under the above conditions, we prove the following two new constant rank theorems:
(1)
If has a local minimum, then has constant rank 1 for .
(2)
If has a local minimum, then is always zero and must have constant rank in the domain for .
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis