Two new constant rank theorems

IF 1.7 2区 数学 Q1 MATHEMATICS
Qinfeng Li, Lu Xu
{"title":"Two new constant rank theorems","authors":"Qinfeng Li,&nbsp;Lu Xu","doi":"10.1016/j.jfa.2025.110935","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated from one-dimensional rigidity results of entire solutions to Liouville equation, we consider the semilinear equation<span><span><span>(0.1)</span><span><math><mrow><mi>Δ</mi><mi>u</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>u</mi><mo>)</mo><mspace></mspace><mrow><mtext>in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mi>G</mi><mo>&gt;</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>&lt;</mo><mn>0</mn></math></span> and <span><math><mi>G</mi><msup><mrow><mi>G</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>≤</mo><mi>A</mi><msup><mrow><mo>(</mo><msup><mrow><mi>G</mi></mrow><mrow><mo>′</mo></mrow></msup><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msup></math></span>, with <span><math><mi>A</mi><mo>&gt;</mo><mn>0</mn></math></span>. Let <em>u</em> be a smooth convex solution to <span><span>(0.1)</span></span> and <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></math></span> be the <em>k</em>-th elementary symmetric polynomial with respect to <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></math></span>. Under the above conditions, we prove the following two new constant rank theorems:<ul><li><span>(1)</span><span><div>If <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></math></span> has a local minimum, then <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></math></span> has constant rank 1 for <span><math><mi>A</mi><mo>≤</mo><mn>2</mn></math></span>.</div></span></li><li><span>(2)</span><span><div>If <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></math></span> has a local minimum, then <span><math><msub><mrow><mi>σ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi><mo>)</mo></math></span> is always zero and <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>2</mn></mrow></msup><mi>u</mi></math></span> must have constant rank <span><math><mi>r</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span> in the domain for <span><math><mi>A</mi><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac></math></span>.</div></span></li></ul></div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"289 4","pages":"Article 110935"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362500117X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Motivated from one-dimensional rigidity results of entire solutions to Liouville equation, we consider the semilinear equation(0.1)Δu=G(u)in Rn,where G>0,G<0 and GGA(G)2, with A>0. Let u be a smooth convex solution to (0.1) and σk(D2u) be the k-th elementary symmetric polynomial with respect to D2u. Under the above conditions, we prove the following two new constant rank theorems:
  • (1)
    If σ2(D2u) has a local minimum, then D2u has constant rank 1 for A2.
  • (2)
    If σn(D2u) has a local minimum, then σn(D2u) is always zero and D2u must have constant rank rn1 in the domain for Ann1.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信