Multi-source data-driven conjugate Bayesian inference of the distributions of soil shear strength parameter moments

IF 3 3区 工程技术 Q2 ENGINEERING, MECHANICAL
Yibiao Liu, Weizhong Ren
{"title":"Multi-source data-driven conjugate Bayesian inference of the distributions of soil shear strength parameter moments","authors":"Yibiao Liu,&nbsp;Weizhong Ren","doi":"10.1016/j.probengmech.2025.103758","DOIUrl":null,"url":null,"abstract":"<div><div>The distributions of soil shear strength parameter moments are crucial for slope reliability analyses. The expressions for the joint posterior distributions of the mean and variance of shear strength parameters <span><math><mrow><mi>c</mi></mrow></math></span> and <span><math><mrow><mi>φ</mi></mrow></math></span> are derived based on conjugate Bayesian inference under the assumptions of normality and lognormality. To fuse prior distributions obtained from multiple data sources, the expression of the Jensen–Shannon (JS) divergence is generalized to two-dimensional cases. The generalized JS divergence can measure the similarity between the prior and posterior distributions so that it is adopted as the metric to determine the weights of different prior distributions. An illustrative example demonstrates that the posterior distribution inferred from the fused prior distribution can effectively integrate the information from each individual prior distribution. The weighting method based on the generalized JS divergence enhances the anti-interference ability of the fused prior distribution. Comparisons of the maximum a posteriori estimation results of the mean and variance reveal that the inference results based on the two distributional assumptions differ slightly, which can also be drawn from the comparison of the standard values. The illustrative example reveals that the proposed method can provide a reference for the posterior distribution inference of geotechnical parameter statistics.</div></div>","PeriodicalId":54583,"journal":{"name":"Probabilistic Engineering Mechanics","volume":"80 ","pages":"Article 103758"},"PeriodicalIF":3.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probabilistic Engineering Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026689202500030X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The distributions of soil shear strength parameter moments are crucial for slope reliability analyses. The expressions for the joint posterior distributions of the mean and variance of shear strength parameters c and φ are derived based on conjugate Bayesian inference under the assumptions of normality and lognormality. To fuse prior distributions obtained from multiple data sources, the expression of the Jensen–Shannon (JS) divergence is generalized to two-dimensional cases. The generalized JS divergence can measure the similarity between the prior and posterior distributions so that it is adopted as the metric to determine the weights of different prior distributions. An illustrative example demonstrates that the posterior distribution inferred from the fused prior distribution can effectively integrate the information from each individual prior distribution. The weighting method based on the generalized JS divergence enhances the anti-interference ability of the fused prior distribution. Comparisons of the maximum a posteriori estimation results of the mean and variance reveal that the inference results based on the two distributional assumptions differ slightly, which can also be drawn from the comparison of the standard values. The illustrative example reveals that the proposed method can provide a reference for the posterior distribution inference of geotechnical parameter statistics.
土体抗剪强度参数矩分布的多源数据驱动共轭贝叶斯推理
土体抗剪强度参数矩的分布对边坡可靠度分析至关重要。在正态和对数正态假设下,基于共轭贝叶斯推理,推导了抗剪强度参数c和φ的均值和方差的联合后验分布表达式。为了融合从多个数据源获得的先验分布,将Jensen-Shannon (JS)散度表达式推广到二维情况。广义JS散度可以度量先验分布和后验分布之间的相似性,以此作为确定不同先验分布权重的度量。算例表明,由融合先验分布推断出的后验分布能够有效地整合各个个体先验分布的信息。基于广义JS散度的加权方法增强了融合先验分布的抗干扰能力。比较均值和方差的最大后验估计结果可以看出,基于两种分布假设的推理结果略有不同,这也可以从标准值的比较中得出。算例表明,该方法可为岩土参数统计的后验分布推断提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Probabilistic Engineering Mechanics
Probabilistic Engineering Mechanics 工程技术-工程:机械
CiteScore
3.80
自引率
15.40%
发文量
98
审稿时长
13.5 months
期刊介绍: This journal provides a forum for scholarly work dealing primarily with probabilistic and statistical approaches to contemporary solid/structural and fluid mechanics problems encountered in diverse technical disciplines such as aerospace, civil, marine, mechanical, and nuclear engineering. The journal aims to maintain a healthy balance between general solution techniques and problem-specific results, encouraging a fruitful exchange of ideas among disparate engineering specialities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信