{"title":"Fatigue crack growth analysis based on energy parameters: A literature review","authors":"F.V. Antunes , E.R. Sérgio , P.M. Cerezo , P. Lopez-Crespo , D.M. Neto","doi":"10.1016/j.ijsolstr.2025.113355","DOIUrl":null,"url":null,"abstract":"<div><div>Fatigue crack growth (FCG) in metallic materials has been studied using non-linear parameters, which permit a better understanding of crack tip damage. The objective here is to make a literature review about the use of energy parameters in this context. Fundamental concepts are presented, namely the different types of energy that can be identified (the external work, the macroscopic elastic energy, the plastic dissipation, the internal potential energy and the thermal energy). FCG rate has been related with the dissipated energy measured externally, with the dissipated energy in the reversed plastic zone, with a punctual value of dissipated density energy at a critical location ahead of crack tip and with the thermal energy. The links between FCG mechanisms and energy parameters are exploited and guidelines for their use are proposed.</div></div>","PeriodicalId":14311,"journal":{"name":"International Journal of Solids and Structures","volume":"315 ","pages":"Article 113355"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Solids and Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020768325001416","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Fatigue crack growth (FCG) in metallic materials has been studied using non-linear parameters, which permit a better understanding of crack tip damage. The objective here is to make a literature review about the use of energy parameters in this context. Fundamental concepts are presented, namely the different types of energy that can be identified (the external work, the macroscopic elastic energy, the plastic dissipation, the internal potential energy and the thermal energy). FCG rate has been related with the dissipated energy measured externally, with the dissipated energy in the reversed plastic zone, with a punctual value of dissipated density energy at a critical location ahead of crack tip and with the thermal energy. The links between FCG mechanisms and energy parameters are exploited and guidelines for their use are proposed.
期刊介绍:
The International Journal of Solids and Structures has as its objective the publication and dissemination of original research in Mechanics of Solids and Structures as a field of Applied Science and Engineering. It fosters thus the exchange of ideas among workers in different parts of the world and also among workers who emphasize different aspects of the foundations and applications of the field.
Standing as it does at the cross-roads of Materials Science, Life Sciences, Mathematics, Physics and Engineering Design, the Mechanics of Solids and Structures is experiencing considerable growth as a result of recent technological advances. The Journal, by providing an international medium of communication, is encouraging this growth and is encompassing all aspects of the field from the more classical problems of structural analysis to mechanics of solids continually interacting with other media and including fracture, flow, wave propagation, heat transfer, thermal effects in solids, optimum design methods, model analysis, structural topology and numerical techniques. Interest extends to both inorganic and organic solids and structures.