Yufang Liao , Longzhang Niu , Jinghan Song , Xiaoli Liang , Didi Wen , Yuqi Li , Lina Niu , Yongkang Bai
{"title":"Multifunctional composite ionogel-based sensors for chronic disease surveillance and health monitoring","authors":"Yufang Liao , Longzhang Niu , Jinghan Song , Xiaoli Liang , Didi Wen , Yuqi Li , Lina Niu , Yongkang Bai","doi":"10.1016/j.compositesb.2025.112450","DOIUrl":null,"url":null,"abstract":"<div><div>Flexible sensors for real-time health monitoring are vital for early detection and long-term management of chronic diseases. Despite the valuable insights provided by existing health monitoring systems, they are often limited by functionality, dependence on external power sources, and challenges related to portability and user comfort. Herein, we presented a self-powered flexible sensor fabricated from a polyvinylidene fluoride (PVDF) composite ionogel that offers frost resistance, high strength, antibacterial properties, and biocompatibility. As both the friction and conductive layers in a triboelectric nanogenerator-based sensor, the composite ionogel's output performance is significantly enhanced by the synergistic effects of Cu(NO<sub>3</sub>)<sub>2</sub> and multi-walled carbon nanotubes (MWCNTs), resulting in a 4.23-fold increase in output voltage. The developed pressure sensor exhibits a sensitivity of 2.66 V kPa<sup>−1</sup> within a range of 0.32–1.69 kPa, enabling effective monitoring of human motion and applications such as sign language recognition and chronic disease monitoring, including obstructive sleep apnea hypopnea syndrome (OSAHS). Furthermore, the incorporation of MWCNTs imparts exceptional thermal sensitivity (0.456 % °C<sup>−1</sup>) to the sensor, allowing accurate real-time body temperature monitoring. These versatile ionogel sensors, which integrate real-time physiological signal tracking, have significant potential to advance wearable medical technologies and personalized healthcare solutions.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"299 ","pages":"Article 112450"},"PeriodicalIF":12.7000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836825003518","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flexible sensors for real-time health monitoring are vital for early detection and long-term management of chronic diseases. Despite the valuable insights provided by existing health monitoring systems, they are often limited by functionality, dependence on external power sources, and challenges related to portability and user comfort. Herein, we presented a self-powered flexible sensor fabricated from a polyvinylidene fluoride (PVDF) composite ionogel that offers frost resistance, high strength, antibacterial properties, and biocompatibility. As both the friction and conductive layers in a triboelectric nanogenerator-based sensor, the composite ionogel's output performance is significantly enhanced by the synergistic effects of Cu(NO3)2 and multi-walled carbon nanotubes (MWCNTs), resulting in a 4.23-fold increase in output voltage. The developed pressure sensor exhibits a sensitivity of 2.66 V kPa−1 within a range of 0.32–1.69 kPa, enabling effective monitoring of human motion and applications such as sign language recognition and chronic disease monitoring, including obstructive sleep apnea hypopnea syndrome (OSAHS). Furthermore, the incorporation of MWCNTs imparts exceptional thermal sensitivity (0.456 % °C−1) to the sensor, allowing accurate real-time body temperature monitoring. These versatile ionogel sensors, which integrate real-time physiological signal tracking, have significant potential to advance wearable medical technologies and personalized healthcare solutions.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.