Yu Zhang , Yanqing Geng , Yan Zhang , Yidan Ma , Xin Yin , Zhuxiu Chen , Xinyi Mu , Rufei Gao , Xuemei Chen , Fangfang Li , Junlin He
{"title":"Dicyclohexyl phthalate derails trophoblast function and lipid metabolism through NDRG1 by targeting PPARα:RXRα","authors":"Yu Zhang , Yanqing Geng , Yan Zhang , Yidan Ma , Xin Yin , Zhuxiu Chen , Xinyi Mu , Rufei Gao , Xuemei Chen , Fangfang Li , Junlin He","doi":"10.1016/j.tox.2025.154124","DOIUrl":null,"url":null,"abstract":"<div><div>Phthalates (PAEs) can impair trophoblast cell and subsequent placental development, adversely affecting pregnancy. The effects of dicyclohexyl phthalate (DCHP), the main PAE homologue in urban household dust, on trophoblast function and placental development are unknown. In this study, we investigated the effects and potential mechanisms of DCHP on trophoblast function and placental development by constructing in vitro trophoblast (10, 20, 30 μM) and in vivo mouse pregnancy (25, 50, 100 mg/kg bw) exposure models. We found that exposure to DCHP during pregnancy led to the accumulation of placental lipid droplets and foetal weight gain. Consistently, DCHP induced the uptake of fatty acids by HTR-8/SVneo cells, leading to intracellular lipid droplet accumulation and mitochondrial dysfunction while inhibiting cell migration and invasion. This suggests that metabolic processes can serve as important links for environmental pollutants to interfere with bodily functions. Knocking down N-myc Downstream-Regulated Gene 1 (NDRG1) can alleviate lipid metabolism abnormalities caused by DCHP exposure while restoring cell migration and invasion abilities. Further research has found that the enhanced transcriptional activity of PPARα:RXRα is an important molecular initiating event for the role of DCHP, which promotes the transcription of downstream target gene NDRG1 by binding to PPARα:RXRα. These findings fill the research gap regarding the effects and related mechanisms of DCHP exposure on the placenta, help explore prevention and treatment strategies for DCHP reproductive toxicity, and provide new insights into toxicological research on environmental pollutants.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"514 ","pages":"Article 154124"},"PeriodicalIF":4.8000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X25000800","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Phthalates (PAEs) can impair trophoblast cell and subsequent placental development, adversely affecting pregnancy. The effects of dicyclohexyl phthalate (DCHP), the main PAE homologue in urban household dust, on trophoblast function and placental development are unknown. In this study, we investigated the effects and potential mechanisms of DCHP on trophoblast function and placental development by constructing in vitro trophoblast (10, 20, 30 μM) and in vivo mouse pregnancy (25, 50, 100 mg/kg bw) exposure models. We found that exposure to DCHP during pregnancy led to the accumulation of placental lipid droplets and foetal weight gain. Consistently, DCHP induced the uptake of fatty acids by HTR-8/SVneo cells, leading to intracellular lipid droplet accumulation and mitochondrial dysfunction while inhibiting cell migration and invasion. This suggests that metabolic processes can serve as important links for environmental pollutants to interfere with bodily functions. Knocking down N-myc Downstream-Regulated Gene 1 (NDRG1) can alleviate lipid metabolism abnormalities caused by DCHP exposure while restoring cell migration and invasion abilities. Further research has found that the enhanced transcriptional activity of PPARα:RXRα is an important molecular initiating event for the role of DCHP, which promotes the transcription of downstream target gene NDRG1 by binding to PPARα:RXRα. These findings fill the research gap regarding the effects and related mechanisms of DCHP exposure on the placenta, help explore prevention and treatment strategies for DCHP reproductive toxicity, and provide new insights into toxicological research on environmental pollutants.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.