{"title":"Stability and existence of wormhole models in F(Q) gravity generated by holographic dark energy densities","authors":"Sat Paul , S.K. Maurya , Jitendra Kumar","doi":"10.1016/j.nuclphysb.2025.116886","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we investigate the existence, stability and physical viability of wormhole solutions within the framework of <span><math><mi>F</mi><mo>(</mo><mi>Q</mi><mo>)</mo></math></span> gravity, a modified gravity theory where <span><math><mi>Q</mi></math></span> represents the non-metricity scalar. In this study, we developed wormhole models using holographic dark energy density profiles described by Bekenstein-Hawking and Moradpour, represented as <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>b</mi><mi>h</mi></mrow></msub><mo>(</mo><mi>r</mi><mo>)</mo><mo>=</mo><mfrac><mrow><msub><mrow><mi>Ψ</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>π</mi></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac></math></span> and <span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>M</mi></mrow></msub><mo>=</mo><mfrac><mrow><msub><mrow><mi>Ψ</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow><mrow><mn>4</mn><mi>π</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>(</mo><mi>π</mi><mi>λ</mi><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mn>1</mn><mo>)</mo></mrow></mfrac></math></span>, respectively. The derived solutions for the wormhole's shape function fulfil the necessary conditions. This study examines the influence of the parameters <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>Ψ</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> on the equilibrium state of the wormhole solution and the breaking of energy conditions. Our findings indicate that each model deviates from the null energy condition, indicating the necessity of exotic matter for the stability of wormholes. Additionally, we analysed the geometry of wormhole models by embedding diagrams. To achieve the physical viability of the wormhole, we examined the active gravitational mass (<span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>a</mi><mi>c</mi><mi>t</mi><mi>i</mi><mi>v</mi><mi>e</mi></mrow></msub></math></span>) for both models.</div></div>","PeriodicalId":54712,"journal":{"name":"Nuclear Physics B","volume":"1014 ","pages":"Article 116886"},"PeriodicalIF":2.5000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Physics B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0550321325000951","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we investigate the existence, stability and physical viability of wormhole solutions within the framework of gravity, a modified gravity theory where represents the non-metricity scalar. In this study, we developed wormhole models using holographic dark energy density profiles described by Bekenstein-Hawking and Moradpour, represented as and , respectively. The derived solutions for the wormhole's shape function fulfil the necessary conditions. This study examines the influence of the parameters and on the equilibrium state of the wormhole solution and the breaking of energy conditions. Our findings indicate that each model deviates from the null energy condition, indicating the necessity of exotic matter for the stability of wormholes. Additionally, we analysed the geometry of wormhole models by embedding diagrams. To achieve the physical viability of the wormhole, we examined the active gravitational mass () for both models.
期刊介绍:
Nuclear Physics B focuses on the domain of high energy physics, quantum field theory, statistical systems, and mathematical physics, and includes four main sections: high energy physics - phenomenology, high energy physics - theory, high energy physics - experiment, and quantum field theory, statistical systems, and mathematical physics. The emphasis is on original research papers (Frontiers Articles or Full Length Articles), but Review Articles are also welcome.