{"title":"In situ nonlinear ultrasonic characterization of slip irreversibility and material hardening in stainless steel 316L","authors":"Changgong Kim, Hyelim Do, Kathryn H. Matlack","doi":"10.1016/j.ndteint.2025.103401","DOIUrl":null,"url":null,"abstract":"<div><div>This work uses in situ nonlinear ultrasound measurements to study the relationship between the acoustic nonlinearity parameter <em>β</em> and the low cycle fatigue behavior of stainless steel 316L. The measured <em>β</em> shows a rapid decrease during hardening followed by a transition to a slower decrease in <em>β</em> as a function of fatigue cycles. Measurements show this trend is consistent at two different strain amplitudes. By comparing our results with prior work on dislocation characterizations in the same material, we hypothesize that the transition in slopes of <em>β</em> coincides with the planar-to-wavy transition that occurs at the end of hardening. Further, measurement results show that the parameter <em>Δβ</em><sub><em>t-c</em></sub>, the difference between <em>β</em> measured after the tension and compression portions of the fatigue cycle, depends on strain amplitude. The dependence of <em>Δβ</em><sub><em>t-c</em></sub> on strain amplitude is related to fatigue life through a power law relationship, similar to slip irreversibility. Overall, the results provided in this work suggest that <em>β</em> correlates with characteristics of low cycle fatigue, and thus supports the idea that in situ NLU measurements can eventually be used as a quantitative measure to predict fatigue life.</div></div>","PeriodicalId":18868,"journal":{"name":"Ndt & E International","volume":"154 ","pages":"Article 103401"},"PeriodicalIF":4.1000,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ndt & E International","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0963869525000829","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
This work uses in situ nonlinear ultrasound measurements to study the relationship between the acoustic nonlinearity parameter β and the low cycle fatigue behavior of stainless steel 316L. The measured β shows a rapid decrease during hardening followed by a transition to a slower decrease in β as a function of fatigue cycles. Measurements show this trend is consistent at two different strain amplitudes. By comparing our results with prior work on dislocation characterizations in the same material, we hypothesize that the transition in slopes of β coincides with the planar-to-wavy transition that occurs at the end of hardening. Further, measurement results show that the parameter Δβt-c, the difference between β measured after the tension and compression portions of the fatigue cycle, depends on strain amplitude. The dependence of Δβt-c on strain amplitude is related to fatigue life through a power law relationship, similar to slip irreversibility. Overall, the results provided in this work suggest that β correlates with characteristics of low cycle fatigue, and thus supports the idea that in situ NLU measurements can eventually be used as a quantitative measure to predict fatigue life.
期刊介绍:
NDT&E international publishes peer-reviewed results of original research and development in all categories of the fields of nondestructive testing and evaluation including ultrasonics, electromagnetics, radiography, optical and thermal methods. In addition to traditional NDE topics, the emerging technology area of inspection of civil structures and materials is also emphasized. The journal publishes original papers on research and development of new inspection techniques and methods, as well as on novel and innovative applications of established methods. Papers on NDE sensors and their applications both for inspection and process control, as well as papers describing novel NDE systems for structural health monitoring and their performance in industrial settings are also considered. Other regular features include international news, new equipment and a calendar of forthcoming worldwide meetings. This journal is listed in Current Contents.