Sandro Halwe , Martin Schauflinger , Yuki Takamatsu , Olga Dolnik , Stephan Becker
{"title":"MyosinVb tail inhibits transport of Marburg virus glycoprotein GP to VP40-enriched sites at the plasma membrane","authors":"Sandro Halwe , Martin Schauflinger , Yuki Takamatsu , Olga Dolnik , Stephan Becker","doi":"10.1016/j.virol.2025.110503","DOIUrl":null,"url":null,"abstract":"<div><div>Marburg virus (MARV) is the causative agent of severe fever with case fatality rates between 25 and 90 %. The glycoprotein GP is the only surface protein of MARV responsible for receptor recognition and fusion. Therefore, proper intracellular transport of GP to the plasma membrane and incorporation into virus particles is essential for the viral infection cycle. However, neither the exact post-Golgi trafficking route nor the host factors are known that support the transport of GP to the cell surface.</div><div>Using quantitative confocal microscopy and correlative light and electron microscopy (CLEM), we show here that GP colocalized in both transiently transfected and MARV-infected cells with a dominant negative (DN) tail mutant of myosin Vb (MyoVbT), which inhibits trafficking through recycling endosomes. Overexpression of MyoVbT resulted in an aberrant distribution of GP that accumulated in or near perinuclear MyoVbT-containing structures. Simultaneously, we observed significantly reduced GP levels at the plasma membrane and especially at the viral budding sites characterized by clusters of the viral matrix protein VP40. Further, incorporation of GP into VP40-induced filamentous virus-like particles was impaired by MyoVbT. Overall, our results show that intracellular transport of MARV GP is disrupted by a DN mutant of the recycling endosome-associated motor protein MyoVb. These results might indicate a possible role for the endosomal recycling system in MARV GP trafficking to VP40-enriched budding-sites at the plasma membrane.</div></div>","PeriodicalId":23666,"journal":{"name":"Virology","volume":"607 ","pages":"Article 110503"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042682225001163","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Marburg virus (MARV) is the causative agent of severe fever with case fatality rates between 25 and 90 %. The glycoprotein GP is the only surface protein of MARV responsible for receptor recognition and fusion. Therefore, proper intracellular transport of GP to the plasma membrane and incorporation into virus particles is essential for the viral infection cycle. However, neither the exact post-Golgi trafficking route nor the host factors are known that support the transport of GP to the cell surface.
Using quantitative confocal microscopy and correlative light and electron microscopy (CLEM), we show here that GP colocalized in both transiently transfected and MARV-infected cells with a dominant negative (DN) tail mutant of myosin Vb (MyoVbT), which inhibits trafficking through recycling endosomes. Overexpression of MyoVbT resulted in an aberrant distribution of GP that accumulated in or near perinuclear MyoVbT-containing structures. Simultaneously, we observed significantly reduced GP levels at the plasma membrane and especially at the viral budding sites characterized by clusters of the viral matrix protein VP40. Further, incorporation of GP into VP40-induced filamentous virus-like particles was impaired by MyoVbT. Overall, our results show that intracellular transport of MARV GP is disrupted by a DN mutant of the recycling endosome-associated motor protein MyoVb. These results might indicate a possible role for the endosomal recycling system in MARV GP trafficking to VP40-enriched budding-sites at the plasma membrane.
期刊介绍:
Launched in 1955, Virology is a broad and inclusive journal that welcomes submissions on all aspects of virology including plant, animal, microbial and human viruses. The journal publishes basic research as well as pre-clinical and clinical studies of vaccines, anti-viral drugs and their development, anti-viral therapies, and computational studies of virus infections. Any submission that is of broad interest to the community of virologists/vaccinologists and reporting scientifically accurate and valuable research will be considered for publication, including negative findings and multidisciplinary work.Virology is open to reviews, research manuscripts, short communication, registered reports as well as follow-up manuscripts.