Charge transport and optoelectronic properties in polycyclic Hetero[8]circulenes: A computational study

IF 3.2 4区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Pankaj Verma, Prabhakar Chetti
{"title":"Charge transport and optoelectronic properties in polycyclic Hetero[8]circulenes: A computational study","authors":"Pankaj Verma,&nbsp;Prabhakar Chetti","doi":"10.1016/j.jics.2025.101681","DOIUrl":null,"url":null,"abstract":"<div><div>Heterocirculenes have emerged as promising candidates for novel materials due to their unique molecular structures and intriguing electronic properties. This work's main objective is to assess hetero[8]circulenes' charge transport and optoelectronic characteristics. The comprehensive analyses of all the hetero[8]circulenes are executed by using Density functional theory (DFT) and Time-Dependent Density functional theory (TD-DFT). Molecular Orbitals Pictures (MOPs) i.e. Lowest unoccupied molecular orbital (LUMO) and Highest occupied molecular orbital (HOMO), Electron affinities (EA), Hole Extraction Potential (HEP), Ionization potential (IP), Electron Extraction Potential (EEP), NICS (0), Density of states (DOS), Molecular Electrostatic Potential maps (MEP), and Reorganization energies (Z), of all the studied molecules were examined. The hole and electron transfer integrals, and rate constant for all the molecule are also investigated. The Thiophene and Selenophene containing heterocirculenes show the best charge transport properties, and also, HS3 shows the lowest Z<sub>H</sub> of 36 meV. The difference between hole and electron Z is less than 50 meV, so these are also appropriate as ambipolar materials. The findings of the study indicate the potential utility of Heterocirculenes as organic materials for optoelectronic applications.</div></div>","PeriodicalId":17276,"journal":{"name":"Journal of the Indian Chemical Society","volume":"102 5","pages":"Article 101681"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019452225001165","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterocirculenes have emerged as promising candidates for novel materials due to their unique molecular structures and intriguing electronic properties. This work's main objective is to assess hetero[8]circulenes' charge transport and optoelectronic characteristics. The comprehensive analyses of all the hetero[8]circulenes are executed by using Density functional theory (DFT) and Time-Dependent Density functional theory (TD-DFT). Molecular Orbitals Pictures (MOPs) i.e. Lowest unoccupied molecular orbital (LUMO) and Highest occupied molecular orbital (HOMO), Electron affinities (EA), Hole Extraction Potential (HEP), Ionization potential (IP), Electron Extraction Potential (EEP), NICS (0), Density of states (DOS), Molecular Electrostatic Potential maps (MEP), and Reorganization energies (Z), of all the studied molecules were examined. The hole and electron transfer integrals, and rate constant for all the molecule are also investigated. The Thiophene and Selenophene containing heterocirculenes show the best charge transport properties, and also, HS3 shows the lowest ZH of 36 meV. The difference between hole and electron Z is less than 50 meV, so these are also appropriate as ambipolar materials. The findings of the study indicate the potential utility of Heterocirculenes as organic materials for optoelectronic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
7.70%
发文量
492
审稿时长
3-8 weeks
期刊介绍: The Journal of the Indian Chemical Society publishes original, fundamental, theorical, experimental research work of highest quality in all areas of chemistry, biochemistry, medicinal chemistry, electrochemistry, agrochemistry, chemical engineering and technology, food chemistry, environmental chemistry, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信