Study on mechanical, electrical properties and interfacial bonding of high-strength graphene nanosheets (GNSs)/CuCrZr composites prepared via laser powder bed fusion
{"title":"Study on mechanical, electrical properties and interfacial bonding of high-strength graphene nanosheets (GNSs)/CuCrZr composites prepared via laser powder bed fusion","authors":"Lizheng Zhang , Peng Dong , Qian Wang , Yong Zeng , Jimin Chen","doi":"10.1016/j.coco.2025.102380","DOIUrl":null,"url":null,"abstract":"<div><div>The high optical reflectivity and thermal conductivity of copper make it challenging to form fully dense, high-strength, and high-conductivity copper alloy parts through laser-based additive manufacturing. In this paper, a new method for manufacturing high strength and conductivity copper alloy components by using optical absorption GNSs-coated copper powder and LPBF technology is proposed. The densification behavior, microstructure evolution, mechanical properties, and electrical and thermal conductivity of GNSs/CuCrZr composites prepared by laser powder bed fusion under different process parameters were studied. The high density of 99.58 % was obtained by optimizing the process parameters. With the increase of <em>E</em><sub><em>a</em></sub>, the grain size of the cross section is fine and uniform. The columnar grains in the longitudinal section are slender and grow epitaxially along the deposition direction. The yield strength, ultimate tensile strength, and total elongation at break are 220 MPa, 285 MPa, and 30 %, respectively. This is due to the generation of uniformly dispersed and fine precipitates and high-density dislocations. In addition, the interface characteristics and formation mechanism of GNSs/CuCrZr composites were also discussed by first-principles calculations and experimental studies. The interface between GNSs and CuCrZr is well-bonded, and there is a good agreement between the calculated and experimental data.</div></div>","PeriodicalId":10533,"journal":{"name":"Composites Communications","volume":"56 ","pages":"Article 102380"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Communications","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452213925001330","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The high optical reflectivity and thermal conductivity of copper make it challenging to form fully dense, high-strength, and high-conductivity copper alloy parts through laser-based additive manufacturing. In this paper, a new method for manufacturing high strength and conductivity copper alloy components by using optical absorption GNSs-coated copper powder and LPBF technology is proposed. The densification behavior, microstructure evolution, mechanical properties, and electrical and thermal conductivity of GNSs/CuCrZr composites prepared by laser powder bed fusion under different process parameters were studied. The high density of 99.58 % was obtained by optimizing the process parameters. With the increase of Ea, the grain size of the cross section is fine and uniform. The columnar grains in the longitudinal section are slender and grow epitaxially along the deposition direction. The yield strength, ultimate tensile strength, and total elongation at break are 220 MPa, 285 MPa, and 30 %, respectively. This is due to the generation of uniformly dispersed and fine precipitates and high-density dislocations. In addition, the interface characteristics and formation mechanism of GNSs/CuCrZr composites were also discussed by first-principles calculations and experimental studies. The interface between GNSs and CuCrZr is well-bonded, and there is a good agreement between the calculated and experimental data.
期刊介绍:
Composites Communications (Compos. Commun.) is a peer-reviewed journal publishing short communications and letters on the latest advances in composites science and technology. With a rapid review and publication process, its goal is to disseminate new knowledge promptly within the composites community. The journal welcomes manuscripts presenting creative concepts and new findings in design, state-of-the-art approaches in processing, synthesis, characterization, and mechanics modeling. In addition to traditional fiber-/particulate-reinforced engineering composites, it encourages submissions on composites with exceptional physical, mechanical, and fracture properties, as well as those with unique functions and significant application potential. This includes biomimetic and bio-inspired composites for biomedical applications, functional nano-composites for thermal management and energy applications, and composites designed for extreme service environments.