Cytotoxicity and Genotoxicity toward Mammalian Cells Induced by Organic Iodine in Peroxymonosulfate (PMS) Processes: Activated PMS Is Better than Nonactivated PMS in Mitigating Toxicity
Ye Du, Jie-Yu Cao, Yao Lu, Heng Zhang, Jing Zhang, Yanbiao Shi and Bo Lai*,
{"title":"Cytotoxicity and Genotoxicity toward Mammalian Cells Induced by Organic Iodine in Peroxymonosulfate (PMS) Processes: Activated PMS Is Better than Nonactivated PMS in Mitigating Toxicity","authors":"Ye Du, Jie-Yu Cao, Yao Lu, Heng Zhang, Jing Zhang, Yanbiao Shi and Bo Lai*, ","doi":"10.1021/acs.est.4c1036410.1021/acs.est.4c10364","DOIUrl":null,"url":null,"abstract":"<p >Peroxymonosulfate (PMS) and its activation processes have been extensively studied. However, iodinated byproducts (I-DBPs) generated during nonactivated PMS (NPMS) and activated PMS (APMS) processes pose a significant risk. In NPMS, a 50 μg/L concentration of iodide (I<sup>–</sup>) could significantly (<i>p</i> < 0.05) increase the cytotoxicity of both the Suwanee River natural organic matter (SRNOM) solution and wastewater secondary effluent (SE), at the dose of 0.5 mM PMS. Cytotoxicity and genotoxicity of the SRNOM solution increased by 6.6 mg-phenol/L and 2.4 μg-4-NQO/L with 200 μg/L I<sup>–</sup>. For wastewater secondary effluent (SE), both toxicities increased 2.4-fold and 1.9-fold. APMS reduced cytotoxicity by 42–47% and genotoxicity by 53–60% compared with NPMS in I<sup>–</sup>-containing SRNOM and SE samples. NPMS promoted adsorbable organic iodine (AOI) formation, while APMS inhibited AOI by 77.5–84.9%. FTICR-MS showed NPMS favored I-DBP generation with aromatic precursors, whereas APMS eliminated these precursors and I-DBPs. Compounds such as <i>p</i>-iodophenol and 4-methyl-2-iodophenol were detected in NPMS but removed in APMS. NPMS exhibited weaker oxidation, producing tannic acid-like, lignin-like, and protein-like precursors that can increase toxicity when reacting with HOI. Conversely, APMS enhanced oxidation via hydroxyl radicals and singlet oxygen, decomposing these precursors further. Importantly, APMS also converted HOI into nontoxic iodate, reducing overall toxicity in I<sup>–</sup>-containing water.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"59 12","pages":"5925–5935 5925–5935"},"PeriodicalIF":11.3000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c10364","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Peroxymonosulfate (PMS) and its activation processes have been extensively studied. However, iodinated byproducts (I-DBPs) generated during nonactivated PMS (NPMS) and activated PMS (APMS) processes pose a significant risk. In NPMS, a 50 μg/L concentration of iodide (I–) could significantly (p < 0.05) increase the cytotoxicity of both the Suwanee River natural organic matter (SRNOM) solution and wastewater secondary effluent (SE), at the dose of 0.5 mM PMS. Cytotoxicity and genotoxicity of the SRNOM solution increased by 6.6 mg-phenol/L and 2.4 μg-4-NQO/L with 200 μg/L I–. For wastewater secondary effluent (SE), both toxicities increased 2.4-fold and 1.9-fold. APMS reduced cytotoxicity by 42–47% and genotoxicity by 53–60% compared with NPMS in I–-containing SRNOM and SE samples. NPMS promoted adsorbable organic iodine (AOI) formation, while APMS inhibited AOI by 77.5–84.9%. FTICR-MS showed NPMS favored I-DBP generation with aromatic precursors, whereas APMS eliminated these precursors and I-DBPs. Compounds such as p-iodophenol and 4-methyl-2-iodophenol were detected in NPMS but removed in APMS. NPMS exhibited weaker oxidation, producing tannic acid-like, lignin-like, and protein-like precursors that can increase toxicity when reacting with HOI. Conversely, APMS enhanced oxidation via hydroxyl radicals and singlet oxygen, decomposing these precursors further. Importantly, APMS also converted HOI into nontoxic iodate, reducing overall toxicity in I–-containing water.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.