Mitigation of Cadmium Uptake in Bread Wheat (Triticum aestivum L.) and Durum Wheat (Triticum durum L.) with Natural and Enriched Bentonite Treatments

IF 3.7 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Faruk Özkutlu*, Özlem Ete Aydemir, Ayhan Kocaman, Dilek Ece and Mehmet Akgün, 
{"title":"Mitigation of Cadmium Uptake in Bread Wheat (Triticum aestivum L.) and Durum Wheat (Triticum durum L.) with Natural and Enriched Bentonite Treatments","authors":"Faruk Özkutlu*,&nbsp;Özlem Ete Aydemir,&nbsp;Ayhan Kocaman,&nbsp;Dilek Ece and Mehmet Akgün,&nbsp;","doi":"10.1021/acsomega.5c0035310.1021/acsomega.5c00353","DOIUrl":null,"url":null,"abstract":"<p >Soil pollution by heavy metals is a significant issue impacting food security and human health. Cadmium, a toxic metal, contaminates soils via industrial and agricultural activities, posing risks to the food chain. This study aimed to evaluate methods for reducing cadmium bioavailability in bread wheat and durum wheat, crucial crops for human nutrition grown on contaminated soils. A greenhouse experiment was conducted in which soil samples were treated with 3–6% natural bentonite and sodium-enriched bentonite and contaminated with 5 and 10 ppm cadmium. Compared to controls, cadmium bioavailability in bread wheat decreased by 55% with 5 ppm of Cd and by 66% with 10 ppm of Cd when treated with 6% sodium-enriched bentonite. Similarly, in durum wheat, cadmium bioavailability decreased by 55% and 48% at 5 and 10 mg Cd kg<sup>–1</sup>, respectively. Additionally, 6% natural and enriched bentonite applications increased biomass production in both wheat varieties. Bread wheat dry matter increased by 43.69% with 5 ppm of Cd and natural bentonite, while durum wheat showed an increase of 88.66% with 10 ppm of Cd and enriched bentonite. In bread wheat, the highest B concentration was obtained with 6% NB at 5 and 10 ppm of Cd, with increases of 15.5%, 39.53%, and 16.56% compared to controls; similar increases were seen in durum wheat. Ca concentrations increased with Cd application in control samples, whereas Mn concentrations decreased with Cd and bentonite treatments. The highest Na concentrations in both wheat varieties were recorded at 6% EB, resulting in significant increases (bread wheat: 2434%–4126%; durum wheat: 2763%–3592%) compared to controls. Nutrient stability for Fe, Cu, K, Mg, P, and Zn varied according to Cd dose and bentonite type. The addition of natural and sodium-enriched bentonite effectively reduced cadmium bioavailability in bread and durum wheat, while promoting increased biomass production. These findings suggest that bentonite amendments have potential applications for enhancing crop yields and ensuring food safety in cadmium-contaminated environments.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 12","pages":"12553–12568 12553–12568"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.5c00353","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.5c00353","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil pollution by heavy metals is a significant issue impacting food security and human health. Cadmium, a toxic metal, contaminates soils via industrial and agricultural activities, posing risks to the food chain. This study aimed to evaluate methods for reducing cadmium bioavailability in bread wheat and durum wheat, crucial crops for human nutrition grown on contaminated soils. A greenhouse experiment was conducted in which soil samples were treated with 3–6% natural bentonite and sodium-enriched bentonite and contaminated with 5 and 10 ppm cadmium. Compared to controls, cadmium bioavailability in bread wheat decreased by 55% with 5 ppm of Cd and by 66% with 10 ppm of Cd when treated with 6% sodium-enriched bentonite. Similarly, in durum wheat, cadmium bioavailability decreased by 55% and 48% at 5 and 10 mg Cd kg–1, respectively. Additionally, 6% natural and enriched bentonite applications increased biomass production in both wheat varieties. Bread wheat dry matter increased by 43.69% with 5 ppm of Cd and natural bentonite, while durum wheat showed an increase of 88.66% with 10 ppm of Cd and enriched bentonite. In bread wheat, the highest B concentration was obtained with 6% NB at 5 and 10 ppm of Cd, with increases of 15.5%, 39.53%, and 16.56% compared to controls; similar increases were seen in durum wheat. Ca concentrations increased with Cd application in control samples, whereas Mn concentrations decreased with Cd and bentonite treatments. The highest Na concentrations in both wheat varieties were recorded at 6% EB, resulting in significant increases (bread wheat: 2434%–4126%; durum wheat: 2763%–3592%) compared to controls. Nutrient stability for Fe, Cu, K, Mg, P, and Zn varied according to Cd dose and bentonite type. The addition of natural and sodium-enriched bentonite effectively reduced cadmium bioavailability in bread and durum wheat, while promoting increased biomass production. These findings suggest that bentonite amendments have potential applications for enhancing crop yields and ensuring food safety in cadmium-contaminated environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信