Lei Ci, Beilei Li, Jiahao Xu, Sihua Peng, Linhua Jiang and Wei Long*,
{"title":"MulAFNet: Integrating Multiple Molecular Representations for Enhanced Property Prediction","authors":"Lei Ci, Beilei Li, Jiahao Xu, Sihua Peng, Linhua Jiang and Wei Long*, ","doi":"10.1021/acsomega.4c0988410.1021/acsomega.4c09884","DOIUrl":null,"url":null,"abstract":"<p >In computer-aided drug design, molecular representation plays a crucial role. Most existing multimodal approaches primarily perform simple concatenation of various feature representations, without adequately emphasizing effective integration among these features. To address this issue, this study proposes a network framework that integrates multimodal representations using a multihead attention flow (MulAFNet). MulAFNet utilizes SMILES string representation and two levels of molecular graph representations: atom-level and functional group-level graph structure. Pretraining tasks are established for each of these three representations, which are then fused in downstream tasks to predict molecular properties. The experiments were conducted on six classification data sets and three regression data sets, demonstrating that the use of multiple molecular representations as input has a significant impact on the results. In particular, the excellent performance of our fusion method in molecular property prediction outperforms other state-of-the-art methods, proving its superiority. Additionally, comparative experiments on fusion methods and ablation studies, further validate the effectiveness of MulAFNet. The results demonstrate that multiple molecular feature representations provide a more comprehensive molecular understanding, and appropriate pretraining tasks enhance molecular property prediction.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"10 12","pages":"12043–12053 12043–12053"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c09884","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c09884","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In computer-aided drug design, molecular representation plays a crucial role. Most existing multimodal approaches primarily perform simple concatenation of various feature representations, without adequately emphasizing effective integration among these features. To address this issue, this study proposes a network framework that integrates multimodal representations using a multihead attention flow (MulAFNet). MulAFNet utilizes SMILES string representation and two levels of molecular graph representations: atom-level and functional group-level graph structure. Pretraining tasks are established for each of these three representations, which are then fused in downstream tasks to predict molecular properties. The experiments were conducted on six classification data sets and three regression data sets, demonstrating that the use of multiple molecular representations as input has a significant impact on the results. In particular, the excellent performance of our fusion method in molecular property prediction outperforms other state-of-the-art methods, proving its superiority. Additionally, comparative experiments on fusion methods and ablation studies, further validate the effectiveness of MulAFNet. The results demonstrate that multiple molecular feature representations provide a more comprehensive molecular understanding, and appropriate pretraining tasks enhance molecular property prediction.
ACS OmegaChemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍:
ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.