Covalent organic cages in supramolecular separation

IF 20.3 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Ishfaq Ahmad Rather , Fei Wang , Rafia Siddiqui , Meiyue Zhang , Wei Zhou , Xiao Cai , Qing He
{"title":"Covalent organic cages in supramolecular separation","authors":"Ishfaq Ahmad Rather ,&nbsp;Fei Wang ,&nbsp;Rafia Siddiqui ,&nbsp;Meiyue Zhang ,&nbsp;Wei Zhou ,&nbsp;Xiao Cai ,&nbsp;Qing He","doi":"10.1016/j.ccr.2025.216648","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic cages (COCs), distinguished by their discrete, three-dimensional architectures with customizable cavities, represent a rapidly advancing class of molecular materials with broad applications, including microreactors, heterogeneous catalysis, high-permeability membranes, and porous liquids. Recent advancements in synthetic strategies and supramolecular chemistry have enabled a diverse range of COC structures, which, like metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), provide high surface areas, accessible porosities, and tunable architectures. Unlike these extended porous networks, COCs are composed of discrete, solvent-soluble units, facilitating enhanced dispersion, processability, and recyclability. Their dynamic features, including reversible polymorphism and supramolecular interactions, support dissociation and recombination, further enhancing their adaptability and shape persistence. This review examines recent progress in the use of COCs for supramolecular separations, with a focus on their utility in separating gases, ions, enantiomers, and positional isomers, as well as in the development of pure and hybrid porous membranes. By synthesizing current findings, we aim to assist researchers in designing COCs tailored to specific industrial separation applications, highlighting the increasing relevance of these materials in separation science.</div></div>","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"535 ","pages":"Article 216648"},"PeriodicalIF":20.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010854525002188","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Covalent organic cages (COCs), distinguished by their discrete, three-dimensional architectures with customizable cavities, represent a rapidly advancing class of molecular materials with broad applications, including microreactors, heterogeneous catalysis, high-permeability membranes, and porous liquids. Recent advancements in synthetic strategies and supramolecular chemistry have enabled a diverse range of COC structures, which, like metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and porous organic polymers (POPs), provide high surface areas, accessible porosities, and tunable architectures. Unlike these extended porous networks, COCs are composed of discrete, solvent-soluble units, facilitating enhanced dispersion, processability, and recyclability. Their dynamic features, including reversible polymorphism and supramolecular interactions, support dissociation and recombination, further enhancing their adaptability and shape persistence. This review examines recent progress in the use of COCs for supramolecular separations, with a focus on their utility in separating gases, ions, enantiomers, and positional isomers, as well as in the development of pure and hybrid porous membranes. By synthesizing current findings, we aim to assist researchers in designing COCs tailored to specific industrial separation applications, highlighting the increasing relevance of these materials in separation science.

Abstract Image

Abstract Image

超分子分离中的共价有机笼
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coordination Chemistry Reviews
Coordination Chemistry Reviews 化学-无机化学与核化学
CiteScore
34.30
自引率
5.30%
发文量
457
审稿时长
54 days
期刊介绍: Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers. The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信