Selective Design of MOF-derived Electrocatalytic Interphases by Potential-Driven Surface Reconstruction

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Sergio HernándezSalvador, Inmaculada Márquez, Silvia Gutiérrez-Tarriño, Juan José Calvente, Jose Luis del Río-Rodríguez, Pascual Oña-Burgos, Rafael Andreu, José Luis Olloqui-Sariego
{"title":"Selective Design of MOF-derived Electrocatalytic Interphases by Potential-Driven Surface Reconstruction","authors":"Sergio HernándezSalvador, Inmaculada Márquez, Silvia Gutiérrez-Tarriño, Juan José Calvente, Jose Luis del Río-Rodríguez, Pascual Oña-Burgos, Rafael Andreu, José Luis Olloqui-Sariego","doi":"10.1016/j.electacta.2025.146158","DOIUrl":null,"url":null,"abstract":"Metal-organic frameworks (MOFs) can be used as precursors for the directed synthesis of derived materials with enhanced performance for electrocatalysis. Herein, we report on an <em>in-situ</em> electrochemical strategy for the selective synthesis of hybrid electrocatalysts using a cobalt MOF (2D-CoMOF) as a precursor for constructing electrochemical sensors to monitor the glucose oxidation reaction (GOR). By using <em>in-situ</em> Raman spectroelectrochemistry, it is demonstrated that a precise control of the applied potential during amperometric treatment of 2D-CoMOF can promote the generation of derived heterostructures in which the original MOF coexists with metal oxides and/or oxyhydroxides (MOF-MOx) with different compositions. The so-prepared electrodes exhibit high electroactive surface areas, a high number of electrocatalytically active cobalt sites and an efficient charge transport across the catalytic film. Moreover, their composition-dependent electrocatalytic performance for the glucose oxidation reaction is examined, establishing a relationship between the applied potential, the macroscopic chemical composition of the heterostructure and the electrocatalytic performance for glucose sensing. In particular, the hybrid phases consisting of Co-MOF/Co<sub>3</sub>O<sub>4</sub>/CoOOH display superior electrocatalytic sensing performance with a wide linear concentration range and high sensitivity. The present work emphasizes the significance that the precise control of the applied potential has on the electrochemically-assisted MOF transformation for developing highly efficient MOF-derived electrocatalysts.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"43 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.146158","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Metal-organic frameworks (MOFs) can be used as precursors for the directed synthesis of derived materials with enhanced performance for electrocatalysis. Herein, we report on an in-situ electrochemical strategy for the selective synthesis of hybrid electrocatalysts using a cobalt MOF (2D-CoMOF) as a precursor for constructing electrochemical sensors to monitor the glucose oxidation reaction (GOR). By using in-situ Raman spectroelectrochemistry, it is demonstrated that a precise control of the applied potential during amperometric treatment of 2D-CoMOF can promote the generation of derived heterostructures in which the original MOF coexists with metal oxides and/or oxyhydroxides (MOF-MOx) with different compositions. The so-prepared electrodes exhibit high electroactive surface areas, a high number of electrocatalytically active cobalt sites and an efficient charge transport across the catalytic film. Moreover, their composition-dependent electrocatalytic performance for the glucose oxidation reaction is examined, establishing a relationship between the applied potential, the macroscopic chemical composition of the heterostructure and the electrocatalytic performance for glucose sensing. In particular, the hybrid phases consisting of Co-MOF/Co3O4/CoOOH display superior electrocatalytic sensing performance with a wide linear concentration range and high sensitivity. The present work emphasizes the significance that the precise control of the applied potential has on the electrochemically-assisted MOF transformation for developing highly efficient MOF-derived electrocatalysts.
通过电位驱动的表面重构选择性设计 MOF 衍生的电催化界面
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信