Engineering high-performance argyrodite sulfide electrolytes via metal halide doping for all-solid-state lithium metal batteries

IF 18.9 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Yang Li , Gang Wu , Xiaomeng Fan , Dabing Li , Hong Liu , Xiaoxue Zhao , Wanqing Ren , Peng Lei , Xianyi Zhao , Xun Wang , Guoxu Wang , Lei Gao , Ce-Wen Nan , Li-Zhen Fan
{"title":"Engineering high-performance argyrodite sulfide electrolytes via metal halide doping for all-solid-state lithium metal batteries","authors":"Yang Li ,&nbsp;Gang Wu ,&nbsp;Xiaomeng Fan ,&nbsp;Dabing Li ,&nbsp;Hong Liu ,&nbsp;Xiaoxue Zhao ,&nbsp;Wanqing Ren ,&nbsp;Peng Lei ,&nbsp;Xianyi Zhao ,&nbsp;Xun Wang ,&nbsp;Guoxu Wang ,&nbsp;Lei Gao ,&nbsp;Ce-Wen Nan ,&nbsp;Li-Zhen Fan","doi":"10.1016/j.ensm.2025.104221","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state electrolytes (SSEs) play a crucial role in the operation of all-solid-state lithium metal batteries (ASSLMBs). Among them, sulfide SSEs have attracted particular attention due to their high ionic conductivity. However, the incompatibility of sulfide SSEs with lithium anodes and the inherent air instability severely impact battery cycling performance. Here, we successfully synthesize halogen-rich lithium argyrodites with the general formula Li<sub>5.5</sub> <sub>+</sub> <sub>3x</sub>P<sub>1−x</sub>Cu<sub>x</sub>S<sub>4.5</sub>Cl<sub>1.5</sub> <sub>−</sub> <sub>2x</sub>Br<sub>2x</sub>. The incorporation of Cu and Br alter the spatial arrangement and electronic distribution of structure. Given that the anion disorder positively affects Li-ion dynamics, the ultrahigh ionic conductivity of 10.3 mS cm<sup>−1</sup> at room temperature has been achieved in Li<sub>5.8</sub>P<sub>0.9</sub>Cu<sub>0.1</sub>S<sub>4.5</sub>Cl<sub>1.3</sub>Br<sub>0.2</sub> (LPSC-CB). Importantly, benefiting from the robust and stable interlayer, the lithium symmetric batteries deliver prolonged plating/stripping over 3000 h at 0.2 mA cm<sup>−2</sup>. Furthermore, the density functional theory calculations were used to prove the mechanisms of high chemical stability. Notably, the LPSC-CB electrolyte has remarkable applicability in ASSLMBs. The full batteries of FeS<sub>2</sub>/LPSC-CB/Li deliver outstanding discharge-specific capacities of 788.9 mAh g<sup>−1</sup> and robust cycling stability (&gt;4.02 mAh cm<sup>−2</sup> after 200 cycles). The versatile CuBr<sub>2</sub> substitution in the most promising argyrodite electrolytes is considered as a valid strategy to realize high ionic conductivity and air-stabilized sulfide SSEs for large-scale applications.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"77 ","pages":"Article 104221"},"PeriodicalIF":18.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725002211","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid-state electrolytes (SSEs) play a crucial role in the operation of all-solid-state lithium metal batteries (ASSLMBs). Among them, sulfide SSEs have attracted particular attention due to their high ionic conductivity. However, the incompatibility of sulfide SSEs with lithium anodes and the inherent air instability severely impact battery cycling performance. Here, we successfully synthesize halogen-rich lithium argyrodites with the general formula Li5.5 + 3xP1−xCuxS4.5Cl1.5 2xBr2x. The incorporation of Cu and Br alter the spatial arrangement and electronic distribution of structure. Given that the anion disorder positively affects Li-ion dynamics, the ultrahigh ionic conductivity of 10.3 mS cm−1 at room temperature has been achieved in Li5.8P0.9Cu0.1S4.5Cl1.3Br0.2 (LPSC-CB). Importantly, benefiting from the robust and stable interlayer, the lithium symmetric batteries deliver prolonged plating/stripping over 3000 h at 0.2 mA cm−2. Furthermore, the density functional theory calculations were used to prove the mechanisms of high chemical stability. Notably, the LPSC-CB electrolyte has remarkable applicability in ASSLMBs. The full batteries of FeS2/LPSC-CB/Li deliver outstanding discharge-specific capacities of 788.9 mAh g−1 and robust cycling stability (>4.02 mAh cm−2 after 200 cycles). The versatile CuBr2 substitution in the most promising argyrodite electrolytes is considered as a valid strategy to realize high ionic conductivity and air-stabilized sulfide SSEs for large-scale applications.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Storage Materials
Energy Storage Materials Materials Science-General Materials Science
CiteScore
33.00
自引率
5.90%
发文量
652
审稿时长
27 days
期刊介绍: Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field. Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy. Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信