Yang Li , Gang Wu , Xiaomeng Fan , Dabing Li , Hong Liu , Xiaoxue Zhao , Wanqing Ren , Peng Lei , Xianyi Zhao , Xun Wang , Guoxu Wang , Lei Gao , Ce-Wen Nan , Li-Zhen Fan
{"title":"Engineering high-performance argyrodite sulfide electrolytes via metal halide doping for all-solid-state lithium metal batteries","authors":"Yang Li , Gang Wu , Xiaomeng Fan , Dabing Li , Hong Liu , Xiaoxue Zhao , Wanqing Ren , Peng Lei , Xianyi Zhao , Xun Wang , Guoxu Wang , Lei Gao , Ce-Wen Nan , Li-Zhen Fan","doi":"10.1016/j.ensm.2025.104221","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state electrolytes (SSEs) play a crucial role in the operation of all-solid-state lithium metal batteries (ASSLMBs). Among them, sulfide SSEs have attracted particular attention due to their high ionic conductivity. However, the incompatibility of sulfide SSEs with lithium anodes and the inherent air instability severely impact battery cycling performance. Here, we successfully synthesize halogen-rich lithium argyrodites with the general formula Li<sub>5.5</sub> <sub>+</sub> <sub>3x</sub>P<sub>1−x</sub>Cu<sub>x</sub>S<sub>4.5</sub>Cl<sub>1.5</sub> <sub>−</sub> <sub>2x</sub>Br<sub>2x</sub>. The incorporation of Cu and Br alter the spatial arrangement and electronic distribution of structure. Given that the anion disorder positively affects Li-ion dynamics, the ultrahigh ionic conductivity of 10.3 mS cm<sup>−1</sup> at room temperature has been achieved in Li<sub>5.8</sub>P<sub>0.9</sub>Cu<sub>0.1</sub>S<sub>4.5</sub>Cl<sub>1.3</sub>Br<sub>0.2</sub> (LPSC-CB). Importantly, benefiting from the robust and stable interlayer, the lithium symmetric batteries deliver prolonged plating/stripping over 3000 h at 0.2 mA cm<sup>−2</sup>. Furthermore, the density functional theory calculations were used to prove the mechanisms of high chemical stability. Notably, the LPSC-CB electrolyte has remarkable applicability in ASSLMBs. The full batteries of FeS<sub>2</sub>/LPSC-CB/Li deliver outstanding discharge-specific capacities of 788.9 mAh g<sup>−1</sup> and robust cycling stability (>4.02 mAh cm<sup>−2</sup> after 200 cycles). The versatile CuBr<sub>2</sub> substitution in the most promising argyrodite electrolytes is considered as a valid strategy to realize high ionic conductivity and air-stabilized sulfide SSEs for large-scale applications.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"77 ","pages":"Article 104221"},"PeriodicalIF":18.9000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725002211","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state electrolytes (SSEs) play a crucial role in the operation of all-solid-state lithium metal batteries (ASSLMBs). Among them, sulfide SSEs have attracted particular attention due to their high ionic conductivity. However, the incompatibility of sulfide SSEs with lithium anodes and the inherent air instability severely impact battery cycling performance. Here, we successfully synthesize halogen-rich lithium argyrodites with the general formula Li5.5+3xP1−xCuxS4.5Cl1.5−2xBr2x. The incorporation of Cu and Br alter the spatial arrangement and electronic distribution of structure. Given that the anion disorder positively affects Li-ion dynamics, the ultrahigh ionic conductivity of 10.3 mS cm−1 at room temperature has been achieved in Li5.8P0.9Cu0.1S4.5Cl1.3Br0.2 (LPSC-CB). Importantly, benefiting from the robust and stable interlayer, the lithium symmetric batteries deliver prolonged plating/stripping over 3000 h at 0.2 mA cm−2. Furthermore, the density functional theory calculations were used to prove the mechanisms of high chemical stability. Notably, the LPSC-CB electrolyte has remarkable applicability in ASSLMBs. The full batteries of FeS2/LPSC-CB/Li deliver outstanding discharge-specific capacities of 788.9 mAh g−1 and robust cycling stability (>4.02 mAh cm−2 after 200 cycles). The versatile CuBr2 substitution in the most promising argyrodite electrolytes is considered as a valid strategy to realize high ionic conductivity and air-stabilized sulfide SSEs for large-scale applications.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.