Harnessing triboiontronic Maxwell’s demon by triboelectric-induced polarization for efficient energy-information flow

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Joule Pub Date : 2025-03-31 DOI:10.1016/j.joule.2025.101888
Xiang Li, Yu Wei, Xiang Gao, Zhongqiang Zhang, Zhong Lin Wang, Di Wei
{"title":"Harnessing triboiontronic Maxwell’s demon by triboelectric-induced polarization for efficient energy-information flow","authors":"Xiang Li, Yu Wei, Xiang Gao, Zhongqiang Zhang, Zhong Lin Wang, Di Wei","doi":"10.1016/j.joule.2025.101888","DOIUrl":null,"url":null,"abstract":"Maxwell’s demon seemingly violates the second law of thermodynamics, but in reality, it requires external energy for information processing and particle control, thereby ensuring an overall increase in system entropy. Here, triboiontronic Maxwell’s demon was established by triboelectric-induced polarization, enabling remote regulation of charge migration within electrical double layers (EDLs). For energy flow, an enhanced physical-adsorption triboiontronic nanogenerator (EP-TING) achieved a remarkable transferred charge density of 2,347.12 mC/m<sup>2</sup>, surpassing conventional EDL-based technologies by several orders of magnitude. Furthermore, the advanced synergy-enhanced strategy TING (ES-TING), integrating redox reactions, further increased the charge density to 5,237.51 mC/m<sup>2</sup>, marking a significant breakthrough in energy conversion efficiency. For information flow, bionic neural circuits utilizing EP-TINGs/ES-TINGs enabled highly portable, interference-resistant underwater transmission systems with minimal energy consumption, effectively addressing challenges of acoustic multipath interference, environmental noise, and severe signal attenuation. Therefore, harnessing triboiontronic Maxwell’s demon provides an efficient energy-information flow, proving crucial in the post-Moore era.","PeriodicalId":343,"journal":{"name":"Joule","volume":"5 1","pages":""},"PeriodicalIF":38.6000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2025.101888","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Maxwell’s demon seemingly violates the second law of thermodynamics, but in reality, it requires external energy for information processing and particle control, thereby ensuring an overall increase in system entropy. Here, triboiontronic Maxwell’s demon was established by triboelectric-induced polarization, enabling remote regulation of charge migration within electrical double layers (EDLs). For energy flow, an enhanced physical-adsorption triboiontronic nanogenerator (EP-TING) achieved a remarkable transferred charge density of 2,347.12 mC/m2, surpassing conventional EDL-based technologies by several orders of magnitude. Furthermore, the advanced synergy-enhanced strategy TING (ES-TING), integrating redox reactions, further increased the charge density to 5,237.51 mC/m2, marking a significant breakthrough in energy conversion efficiency. For information flow, bionic neural circuits utilizing EP-TINGs/ES-TINGs enabled highly portable, interference-resistant underwater transmission systems with minimal energy consumption, effectively addressing challenges of acoustic multipath interference, environmental noise, and severe signal attenuation. Therefore, harnessing triboiontronic Maxwell’s demon provides an efficient energy-information flow, proving crucial in the post-Moore era.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信