Development of an EOR-produced petroleum wastewater treatment system through integrated polyacrylonitrile membrane and ZrO2/sericin technologies: revelation of interactive mechanism based on synchrotron and XDLVO analyses

IF 10.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Mengna Li, Guohe Huang, Xiujuan Chen, Zeyuan Xu, Jing Huang, Jianan Yin, Renfei Feng, Ning Chen, Stuart Read, Shuguang Wang
{"title":"Development of an EOR-produced petroleum wastewater treatment system through integrated polyacrylonitrile membrane and ZrO2/sericin technologies: revelation of interactive mechanism based on synchrotron and XDLVO analyses","authors":"Mengna Li, Guohe Huang, Xiujuan Chen, Zeyuan Xu, Jing Huang, Jianan Yin, Renfei Feng, Ning Chen, Stuart Read, Shuguang Wang","doi":"10.1038/s41545-025-00454-6","DOIUrl":null,"url":null,"abstract":"<p>Ultrafiltration technology is one of the most efficient methods to address the issues of enhanced oil recovery-produced petroleum wastewater (EOR-PW) treatment. However, membrane fouling significantly impairs the efficiency of PW treatment. Moreover, the impacts of the complex components (e.g., salt ions, heavy metal ions, and pH level) in PW on membrane performance and the underlying mechanisms (i.e., fouling modes and interactive force) need further exploration. Herin, a novel ZrO<sub>2</sub>/sericin polyacrylonitrile (ZrSS) ultrafiltration membrane was developed for PW treatment, and the impacts and mechanisms of contaminants in PW on membrane filtration performance were systematically investigated using synchrotron-based technology and extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) analysis. The synchrotron-based characterization results indicate the successful fabrication of the ZrSS membrane and the uniform distribution of ZrO<sub>2</sub>/sericin nanocomposites (ZrSS NCs) within the membrane matrix. Optimization results show that the 3ZrSS membrane exhibits the highest water flux of 337.21 LMH and oil rejection of 99.80%. There are 67.58% and 11.04% improvements compared to the pristine PAN (polyacrylonitrile) membrane. Under alkaline pH, high salt ion (NaCl) strength, and low heavy metal ion (Ba<sup>2+</sup>) concentration, the 3ZrSS membrane experienced the least fouling (22.68% water flux decline). XDLVO theory elucidates that, under such conditions, there is a strong repulsive U<sup>TOT</sup> (total interaction force) between oil droplets and the 3ZrSS membrane, which is demonstrated via the strong repulsive EL (electrostatic double layer) force. The 3ZrSS membrane maintained 84.84% of its initial water flux after a 72 h long-term filtration. After four cycled filtration, the 3ZrSS membrane kept an extremely high FRR (flux recovery rate) of 98.83%. This study is anticipated to offer technical, theoretical, and practical insights for the on-demand PW treatment.</p>","PeriodicalId":19375,"journal":{"name":"npj Clean Water","volume":"23 1","pages":""},"PeriodicalIF":10.4000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Clean Water","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41545-025-00454-6","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafiltration technology is one of the most efficient methods to address the issues of enhanced oil recovery-produced petroleum wastewater (EOR-PW) treatment. However, membrane fouling significantly impairs the efficiency of PW treatment. Moreover, the impacts of the complex components (e.g., salt ions, heavy metal ions, and pH level) in PW on membrane performance and the underlying mechanisms (i.e., fouling modes and interactive force) need further exploration. Herin, a novel ZrO2/sericin polyacrylonitrile (ZrSS) ultrafiltration membrane was developed for PW treatment, and the impacts and mechanisms of contaminants in PW on membrane filtration performance were systematically investigated using synchrotron-based technology and extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) analysis. The synchrotron-based characterization results indicate the successful fabrication of the ZrSS membrane and the uniform distribution of ZrO2/sericin nanocomposites (ZrSS NCs) within the membrane matrix. Optimization results show that the 3ZrSS membrane exhibits the highest water flux of 337.21 LMH and oil rejection of 99.80%. There are 67.58% and 11.04% improvements compared to the pristine PAN (polyacrylonitrile) membrane. Under alkaline pH, high salt ion (NaCl) strength, and low heavy metal ion (Ba2+) concentration, the 3ZrSS membrane experienced the least fouling (22.68% water flux decline). XDLVO theory elucidates that, under such conditions, there is a strong repulsive UTOT (total interaction force) between oil droplets and the 3ZrSS membrane, which is demonstrated via the strong repulsive EL (electrostatic double layer) force. The 3ZrSS membrane maintained 84.84% of its initial water flux after a 72 h long-term filtration. After four cycled filtration, the 3ZrSS membrane kept an extremely high FRR (flux recovery rate) of 98.83%. This study is anticipated to offer technical, theoretical, and practical insights for the on-demand PW treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Clean Water
npj Clean Water Environmental Science-Water Science and Technology
CiteScore
15.30
自引率
2.60%
发文量
61
审稿时长
5 weeks
期刊介绍: npj Clean Water publishes high-quality papers that report cutting-edge science, technology, applications, policies, and societal issues contributing to a more sustainable supply of clean water. The journal's publications may also support and accelerate the achievement of Sustainable Development Goal 6, which focuses on clean water and sanitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信