A Durable Metalgel Maintaining 3×106 S∙M‒1 Conductivity under 1 000 000 Stretching Cycles

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xusong Li, Jiacheng Wang, Wen Wang, Hanting Zhang, Yiding Jiao, Songlin Tao, Yuanzhen Wang, Tingting Ye, Jie Song, Chenyu Bai, Haotian Yin, Jiang Lu, Yiran Li, Fangyan Li, Er He, Qianming Li, Kuangyi Zou, Haidong Wang, Xinyin Cao, Xiaoliang Wang, Ye Zhang
{"title":"A Durable Metalgel Maintaining 3×106 S∙M‒1 Conductivity under 1 000 000 Stretching Cycles","authors":"Xusong Li,&nbsp;Jiacheng Wang,&nbsp;Wen Wang,&nbsp;Hanting Zhang,&nbsp;Yiding Jiao,&nbsp;Songlin Tao,&nbsp;Yuanzhen Wang,&nbsp;Tingting Ye,&nbsp;Jie Song,&nbsp;Chenyu Bai,&nbsp;Haotian Yin,&nbsp;Jiang Lu,&nbsp;Yiran Li,&nbsp;Fangyan Li,&nbsp;Er He,&nbsp;Qianming Li,&nbsp;Kuangyi Zou,&nbsp;Haidong Wang,&nbsp;Xinyin Cao,&nbsp;Xiaoliang Wang,&nbsp;Ye Zhang","doi":"10.1002/adma.202420628","DOIUrl":null,"url":null,"abstract":"<p>Conductive elastomers are in high demand for emerging fields such as wearable electronics and soft robotics. However, it remains unavailable to realize the desired metal-level conductivity after extensive stretching cycles, which is a necessity for the above promising application. Here, a new material is presented that employs an elastic, homogeneous, and dense waterborne polyurethane network to immobilize the liquid metal continuum via electrostatic interactions. This new design enables the liquid metal continuum to deform synchronously and reversibly with the polymer network, preserving its conductive structure and significantly enhancing durability. The resulting durable metalgel exhibits conductivity of 3 × 10<sup>6</sup> S∙m<sup>−1</sup>, which remains stable after 1 000 000 stretching cycles. This work overcomes the performance limitations of current conductive elastomers and unlocks new opportunities for cutting-edge applications in wearable technology and robotics.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 20","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adma.202420628","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Conductive elastomers are in high demand for emerging fields such as wearable electronics and soft robotics. However, it remains unavailable to realize the desired metal-level conductivity after extensive stretching cycles, which is a necessity for the above promising application. Here, a new material is presented that employs an elastic, homogeneous, and dense waterborne polyurethane network to immobilize the liquid metal continuum via electrostatic interactions. This new design enables the liquid metal continuum to deform synchronously and reversibly with the polymer network, preserving its conductive structure and significantly enhancing durability. The resulting durable metalgel exhibits conductivity of 3 × 106 S∙m−1, which remains stable after 1 000 000 stretching cycles. This work overcomes the performance limitations of current conductive elastomers and unlocks new opportunities for cutting-edge applications in wearable technology and robotics.

Abstract Image

一种耐用的金属凝胶在100万次拉伸循环下保持3×106 S∙M-1的导电性
导电弹性体在可穿戴电子产品和软机器人等新兴领域的需求量很大。然而,经过大量的拉伸循环后,仍然无法实现所需的金属级导电性,这是上述有前途的应用所必需的。本文提出了一种新材料,该材料采用弹性、均匀和致密的水性聚氨酯网络,通过静电相互作用来固定液态金属连续体。这种新设计使液态金属连续体能够与聚合物网络同步可逆地变形,保持其导电结构,并显着提高耐用性。所得到的耐用金属凝胶的电导率为3 × 106 S∙m−1,经过100万次拉伸循环后仍保持稳定。这项工作克服了当前导电弹性体的性能限制,为可穿戴技术和机器人技术的前沿应用开辟了新的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信