Enhanced Ruthenium Removal and Superior Surface Quality via Abrasive-Free Chemical Mechanical Polishing Using Synergistic Catalysis with the H2O2/PDS/FeIII-NTA System
Yufei You, Ziwei He, Jianwei Zhou, Yuhang Qi, Chong Luo
{"title":"Enhanced Ruthenium Removal and Superior Surface Quality via Abrasive-Free Chemical Mechanical Polishing Using Synergistic Catalysis with the H2O2/PDS/FeIII-NTA System","authors":"Yufei You, Ziwei He, Jianwei Zhou, Yuhang Qi, Chong Luo","doi":"10.1002/smll.202410586","DOIUrl":null,"url":null,"abstract":"As the feature sizes of integrated circuits continue to shrink, the phenomenon of electrical migration in Cu interconnects becomes more severe. Due to the excellent properties of Ru such as short electron mean free path and good resistance to electrical migration, it has the potential to become the next-generation interconnect material. Ru chemical mechanical polishing (CMP) is a crucial step in the fabrication of integrated circuits, with oxidation being the step limiting the Ru removal rate, which affects the efficiency of semiconductor manufacturing. In this study, using the H<sub>2</sub>O<sub>2</sub>/PDS/Fe<sup>III</sup>-NTA system, the removal rate of Ru is improved to 1202 Å min<sup>−1</sup> via abrasive-free CMP at pH = 7; the surface roughness is only 0.94 nm, demonstrating superior surface quality at the atomic level. This system features a synergistic catalytic mechanism, producing the active oxidants HO<sup>•</sup>, SO<sub>4</sub><sup>•−</sup>, and Fe<sup>IV</sup> = O. These active oxidants have strong oxidation capacity and lead to the oxidation of Ru into RuO<sub>2</sub> and RuO<sub>3</sub> and their subsequent oxidation into soluble RuO<sub>4</sub><sup>−</sup> and RuO<sub>4</sub><sup>2−</sup>, which results in the formation of a porous oxide layer on the surface of Ru. The oxidation and mechanical effects reach an equilibrium state and accelerate the removal of Ru.","PeriodicalId":228,"journal":{"name":"Small","volume":"73 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202410586","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
As the feature sizes of integrated circuits continue to shrink, the phenomenon of electrical migration in Cu interconnects becomes more severe. Due to the excellent properties of Ru such as short electron mean free path and good resistance to electrical migration, it has the potential to become the next-generation interconnect material. Ru chemical mechanical polishing (CMP) is a crucial step in the fabrication of integrated circuits, with oxidation being the step limiting the Ru removal rate, which affects the efficiency of semiconductor manufacturing. In this study, using the H2O2/PDS/FeIII-NTA system, the removal rate of Ru is improved to 1202 Å min−1 via abrasive-free CMP at pH = 7; the surface roughness is only 0.94 nm, demonstrating superior surface quality at the atomic level. This system features a synergistic catalytic mechanism, producing the active oxidants HO•, SO4•−, and FeIV = O. These active oxidants have strong oxidation capacity and lead to the oxidation of Ru into RuO2 and RuO3 and their subsequent oxidation into soluble RuO4− and RuO42−, which results in the formation of a porous oxide layer on the surface of Ru. The oxidation and mechanical effects reach an equilibrium state and accelerate the removal of Ru.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.