Valorizing Nitrate in Electrochemical Nitrogen Cycling: Copper-Based Catalysts from Reduction to C–N Coupling

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-30 DOI:10.1002/smll.202500833
Fengting Xie, Ziyang Wu, Jianping Yang
{"title":"Valorizing Nitrate in Electrochemical Nitrogen Cycling: Copper-Based Catalysts from Reduction to C–N Coupling","authors":"Fengting Xie, Ziyang Wu, Jianping Yang","doi":"10.1002/smll.202500833","DOIUrl":null,"url":null,"abstract":"Electrochemical nitrate reduction (NO<sub>3</sub>RR) offers a sustainable approach to mitigating nitrogen pollution while enabling the resourceful conversion of nitrate (NO<sub>3</sub><sup>−</sup>) into ammonia (NH<sub>3</sub>), nitrogen gas (N<sub>2</sub>), and value-added chemicals such as urea. Copper (Cu)-based catalysts, with their versatile catalytic properties and cost-effectiveness, have emerged as pivotal materials in advancing NO<sub>3</sub>RR. This review systematically summarizes recent progress in Cu-based catalysts for NO<sub>3</sub>RR, focusing on their catalytic mechanisms, tuning strategies, and applications across diverse product pathways. The intrinsic self-reconstruction behavior and synergistic effects of Cu-based catalysts are elucidated alongside advanced in situ characterization techniques that reveal dynamic structural evolution and intermediate interactions during reactions. We comprehensively discuss the performance of Cu-based catalysts in steering NO<sub>3</sub>RR toward NH<sub>3</sub> or N<sub>2</sub> production, emphasizing the role of catalyst design (e.g., single atoms, alloys, oxides, hydroxides) in enhancing selectivity and efficiency. Furthermore, the multifunctionality of Cu catalysts is exemplified through carbon–nitrogen (C–N) coupling reactions, where reactive nitrogen intermediates are valorized into urea. Key challenges and future directions are outlined to guide the rational design of Cu-based systems for efficient electrochemical nitrogen cycling.","PeriodicalId":228,"journal":{"name":"Small","volume":"27 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202500833","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical nitrate reduction (NO3RR) offers a sustainable approach to mitigating nitrogen pollution while enabling the resourceful conversion of nitrate (NO3) into ammonia (NH3), nitrogen gas (N2), and value-added chemicals such as urea. Copper (Cu)-based catalysts, with their versatile catalytic properties and cost-effectiveness, have emerged as pivotal materials in advancing NO3RR. This review systematically summarizes recent progress in Cu-based catalysts for NO3RR, focusing on their catalytic mechanisms, tuning strategies, and applications across diverse product pathways. The intrinsic self-reconstruction behavior and synergistic effects of Cu-based catalysts are elucidated alongside advanced in situ characterization techniques that reveal dynamic structural evolution and intermediate interactions during reactions. We comprehensively discuss the performance of Cu-based catalysts in steering NO3RR toward NH3 or N2 production, emphasizing the role of catalyst design (e.g., single atoms, alloys, oxides, hydroxides) in enhancing selectivity and efficiency. Furthermore, the multifunctionality of Cu catalysts is exemplified through carbon–nitrogen (C–N) coupling reactions, where reactive nitrogen intermediates are valorized into urea. Key challenges and future directions are outlined to guide the rational design of Cu-based systems for efficient electrochemical nitrogen cycling.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信