Unveiling the Cation Effects on Electrocatalytic CO2 Reduction via Operando Surface-enhanced Raman Spectroscopy

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-31 DOI:10.1002/smll.202409569
Dexiang Chen, Yunjia Wei, Zixuan Sun, Xing Zhao, Xiao Tang, Xiangnan Zhu, Guoqun Li, Lei Yao, Shuying Chen, Richen Lin, Jiawei Wang, Qiang Li, Xingce Fan, Teng Qiu, Qi Hao
{"title":"Unveiling the Cation Effects on Electrocatalytic CO2 Reduction via Operando Surface-enhanced Raman Spectroscopy","authors":"Dexiang Chen, Yunjia Wei, Zixuan Sun, Xing Zhao, Xiao Tang, Xiangnan Zhu, Guoqun Li, Lei Yao, Shuying Chen, Richen Lin, Jiawei Wang, Qiang Li, Xingce Fan, Teng Qiu, Qi Hao","doi":"10.1002/smll.202409569","DOIUrl":null,"url":null,"abstract":"The electrocatalytic carbon dioxide reduction reaction (CO<sub>2</sub>RR) can be significantly improved by the presence of alkali metal cations, yet the underlying mechanisms remain unclear. In this study, we developed clean Cu nanoparticles with tailored curvatures to modulate the local concentration of K<sup>+</sup> cations and investigate their effects on CO<sub>2</sub>RR. The adjustment of particle curvature allows for direct control over cation concentrations within the electrochemical double layer, enabling broad-range modulation of cation concentration without concerns regarding solubility limitations or anionic interference. By tuning the plasmonic modes of the Cu particles, we achieved highly sensitive surface-enhanced Raman spectroscopy (SERS) under resonant conditions, facilitating in situ tracking of the short-lived intermediates in CO<sub>2</sub>RR. Our results revealed that K<sup>+</sup> cations not only stabilize *COOH and *CO species and reduce the reaction energy barrier for C─C coupling but also increase the surface coverage of *CO, particularly for bridge *CO configurations. Furthermore, our findings suggest that the interactions between bridge *CO and atop *CO play a crucial role in facilitating the C─C coupling, offering insights for the design of electrocatalysts for CO<sub>2</sub>RR.","PeriodicalId":228,"journal":{"name":"Small","volume":"11 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409569","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrocatalytic carbon dioxide reduction reaction (CO2RR) can be significantly improved by the presence of alkali metal cations, yet the underlying mechanisms remain unclear. In this study, we developed clean Cu nanoparticles with tailored curvatures to modulate the local concentration of K+ cations and investigate their effects on CO2RR. The adjustment of particle curvature allows for direct control over cation concentrations within the electrochemical double layer, enabling broad-range modulation of cation concentration without concerns regarding solubility limitations or anionic interference. By tuning the plasmonic modes of the Cu particles, we achieved highly sensitive surface-enhanced Raman spectroscopy (SERS) under resonant conditions, facilitating in situ tracking of the short-lived intermediates in CO2RR. Our results revealed that K+ cations not only stabilize *COOH and *CO species and reduce the reaction energy barrier for C─C coupling but also increase the surface coverage of *CO, particularly for bridge *CO configurations. Furthermore, our findings suggest that the interactions between bridge *CO and atop *CO play a crucial role in facilitating the C─C coupling, offering insights for the design of electrocatalysts for CO2RR.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信