{"title":"Efficient disinfection of real toilet blackwater by ultraviolet/peracetic acid process: Selective intracellular biomolecular oxidation","authors":"Wenjun Yin , Jiabin Chen , Yue Xu , Chengzhi Yu , Xuefei Zhou , Yalei Zhang","doi":"10.1016/j.jhazmat.2025.138099","DOIUrl":null,"url":null,"abstract":"<div><div>Toilet blackwater (BW) disinfection is crucial for preventing microbial contamination but is hindered by its complex composition. This study explored the combined ultraviolet and peracetic acid (UV/PAA) process as a novel strategy for BW disinfection. The UV/PAA process effectively inactivated <em>Fecal coliform</em> (1.372 × 10<sup>−5</sup> s<sup>−2</sup>) in real BW, despite presence of turbidity, suspended solids, and organic matter, which could hinder disinfection. The highly electrophilic PAA and acetoxy(peroxy) radicals were identified as crucial contributors to bacterial inactivation. Biochemical analysis and Density Functional Theory calculations revealed that the system primarily operates through selective intracellular biomolecular oxidation. Electrophilic species preferentially oxidized amino acids with highly local nucleophilicity index, particularly those containing sulfur or nitrogen moieties. This selective oxidation caused protein denaturation, inducing cells into a viable but non-culturable (VBNC) state. Meanwhile, the membrane integrity and metabolic activity was preserved, while oxidative stress and DNA disruption effectively limited bacterial regrowth, proving that this process selectively damages intracellular biomolecules, such as amino acids and DNA. Additionally, the process significantly reduced the abundance of gut microbiota and other pathogens in real BW, highlighting its broad-spectrum antimicrobial efficacy. The UV/PAA process represented a sustainable and eco-friendly advanced disinfection solution for BW treatment.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138099"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425010143","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Toilet blackwater (BW) disinfection is crucial for preventing microbial contamination but is hindered by its complex composition. This study explored the combined ultraviolet and peracetic acid (UV/PAA) process as a novel strategy for BW disinfection. The UV/PAA process effectively inactivated Fecal coliform (1.372 × 10−5 s−2) in real BW, despite presence of turbidity, suspended solids, and organic matter, which could hinder disinfection. The highly electrophilic PAA and acetoxy(peroxy) radicals were identified as crucial contributors to bacterial inactivation. Biochemical analysis and Density Functional Theory calculations revealed that the system primarily operates through selective intracellular biomolecular oxidation. Electrophilic species preferentially oxidized amino acids with highly local nucleophilicity index, particularly those containing sulfur or nitrogen moieties. This selective oxidation caused protein denaturation, inducing cells into a viable but non-culturable (VBNC) state. Meanwhile, the membrane integrity and metabolic activity was preserved, while oxidative stress and DNA disruption effectively limited bacterial regrowth, proving that this process selectively damages intracellular biomolecules, such as amino acids and DNA. Additionally, the process significantly reduced the abundance of gut microbiota and other pathogens in real BW, highlighting its broad-spectrum antimicrobial efficacy. The UV/PAA process represented a sustainable and eco-friendly advanced disinfection solution for BW treatment.
期刊介绍:
The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.