Efficient disinfection of real toilet blackwater by ultraviolet/peracetic acid process: Selective intracellular biomolecular oxidation

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Wenjun Yin , Jiabin Chen , Yue Xu , Chengzhi Yu , Xuefei Zhou , Yalei Zhang
{"title":"Efficient disinfection of real toilet blackwater by ultraviolet/peracetic acid process: Selective intracellular biomolecular oxidation","authors":"Wenjun Yin ,&nbsp;Jiabin Chen ,&nbsp;Yue Xu ,&nbsp;Chengzhi Yu ,&nbsp;Xuefei Zhou ,&nbsp;Yalei Zhang","doi":"10.1016/j.jhazmat.2025.138099","DOIUrl":null,"url":null,"abstract":"<div><div>Toilet blackwater (BW) disinfection is crucial for preventing microbial contamination but is hindered by its complex composition. This study explored the combined ultraviolet and peracetic acid (UV/PAA) process as a novel strategy for BW disinfection. The UV/PAA process effectively inactivated <em>Fecal coliform</em> (1.372 × 10<sup>−5</sup> s<sup>−2</sup>) in real BW, despite presence of turbidity, suspended solids, and organic matter, which could hinder disinfection. The highly electrophilic PAA and acetoxy(peroxy) radicals were identified as crucial contributors to bacterial inactivation. Biochemical analysis and Density Functional Theory calculations revealed that the system primarily operates through selective intracellular biomolecular oxidation. Electrophilic species preferentially oxidized amino acids with highly local nucleophilicity index, particularly those containing sulfur or nitrogen moieties. This selective oxidation caused protein denaturation, inducing cells into a viable but non-culturable (VBNC) state. Meanwhile, the membrane integrity and metabolic activity was preserved, while oxidative stress and DNA disruption effectively limited bacterial regrowth, proving that this process selectively damages intracellular biomolecules, such as amino acids and DNA. Additionally, the process significantly reduced the abundance of gut microbiota and other pathogens in real BW, highlighting its broad-spectrum antimicrobial efficacy. The UV/PAA process represented a sustainable and eco-friendly advanced disinfection solution for BW treatment.</div></div>","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"492 ","pages":"Article 138099"},"PeriodicalIF":12.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304389425010143","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Toilet blackwater (BW) disinfection is crucial for preventing microbial contamination but is hindered by its complex composition. This study explored the combined ultraviolet and peracetic acid (UV/PAA) process as a novel strategy for BW disinfection. The UV/PAA process effectively inactivated Fecal coliform (1.372 × 10−5 s−2) in real BW, despite presence of turbidity, suspended solids, and organic matter, which could hinder disinfection. The highly electrophilic PAA and acetoxy(peroxy) radicals were identified as crucial contributors to bacterial inactivation. Biochemical analysis and Density Functional Theory calculations revealed that the system primarily operates through selective intracellular biomolecular oxidation. Electrophilic species preferentially oxidized amino acids with highly local nucleophilicity index, particularly those containing sulfur or nitrogen moieties. This selective oxidation caused protein denaturation, inducing cells into a viable but non-culturable (VBNC) state. Meanwhile, the membrane integrity and metabolic activity was preserved, while oxidative stress and DNA disruption effectively limited bacterial regrowth, proving that this process selectively damages intracellular biomolecules, such as amino acids and DNA. Additionally, the process significantly reduced the abundance of gut microbiota and other pathogens in real BW, highlighting its broad-spectrum antimicrobial efficacy. The UV/PAA process represented a sustainable and eco-friendly advanced disinfection solution for BW treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信