Emerging Multifunctional Wearable Sensors: Integrating Multimodal Sweat Analysis and Advanced Material Technologies for Next-Generation Health Monitoring
Chong-Bo Ma, Xudong Shang, Mimi Sun, Xiangjie Bo, Jing Bai, Yan Du, Ming Zhou
{"title":"Emerging Multifunctional Wearable Sensors: Integrating Multimodal Sweat Analysis and Advanced Material Technologies for Next-Generation Health Monitoring","authors":"Chong-Bo Ma, Xudong Shang, Mimi Sun, Xiangjie Bo, Jing Bai, Yan Du, Ming Zhou","doi":"10.1021/acssensors.4c03396","DOIUrl":null,"url":null,"abstract":"Sweat, a noninvasive and readily accessible biofluid, offers significant potential in health monitoring through its diverse biomarker profile, including electrolytes, metabolites, and hormones, which reflect physiological states in real time. Multimodal wearable sensors, integrating chemical, physical, and thermal sensing capabilities, have emerged as transformative tools for capturing these biomarkers alongside additional physiological signals. By combining advanced materials such as hydrogels, MXenes, and graphene with innovative structural designs, these sensors enable simultaneous monitoring of biomarkers (e.g., glucose, sodium, and cortisol) alongside parameters like movement and temperature. This Review systematically explores the classification and design of multimodal sensors, emphasizing their ability to address health monitoring challenges across applications including metabolic health management, stress detection, and hydration assessment. Key innovations in functional materials, such as conductive hydrogels and biomimetic structures, are discussed alongside challenges in signal integration, data processing, and power management. Additionally, advancements in self-powered systems and energy harvesting technologies have been highlighted as critical enablers for continuous, real-time monitoring. The Review concludes with a perspective on future directions, emphasizing the need for scalable manufacturing techniques, artificial intelligence integration, and standardized frameworks to enhance sensor functionality and adoption. Multimodal wearable sensors, by seamlessly integrating health data into daily life, hold the promise of transforming personalized healthcare, enabling proactive management of health and wellness through noninvasive, comprehensive, and real-time monitoring.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"40 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.4c03396","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Sweat, a noninvasive and readily accessible biofluid, offers significant potential in health monitoring through its diverse biomarker profile, including electrolytes, metabolites, and hormones, which reflect physiological states in real time. Multimodal wearable sensors, integrating chemical, physical, and thermal sensing capabilities, have emerged as transformative tools for capturing these biomarkers alongside additional physiological signals. By combining advanced materials such as hydrogels, MXenes, and graphene with innovative structural designs, these sensors enable simultaneous monitoring of biomarkers (e.g., glucose, sodium, and cortisol) alongside parameters like movement and temperature. This Review systematically explores the classification and design of multimodal sensors, emphasizing their ability to address health monitoring challenges across applications including metabolic health management, stress detection, and hydration assessment. Key innovations in functional materials, such as conductive hydrogels and biomimetic structures, are discussed alongside challenges in signal integration, data processing, and power management. Additionally, advancements in self-powered systems and energy harvesting technologies have been highlighted as critical enablers for continuous, real-time monitoring. The Review concludes with a perspective on future directions, emphasizing the need for scalable manufacturing techniques, artificial intelligence integration, and standardized frameworks to enhance sensor functionality and adoption. Multimodal wearable sensors, by seamlessly integrating health data into daily life, hold the promise of transforming personalized healthcare, enabling proactive management of health and wellness through noninvasive, comprehensive, and real-time monitoring.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.