Uranium Extraction from Radioactive Wastewater by NH2-MIL-125 Immobilized in a Double-Network Aerogel Microsphere

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lu Zhang, Ming-Yi Sun, Xiang-Yu Li, Meng-Yuan Liu, Hong-Yu Chu, Chong-Chen Wang, Peng Wang, Xiao-Hong Yi, Yi Wang, Jiguang Deng
{"title":"Uranium Extraction from Radioactive Wastewater by NH2-MIL-125 Immobilized in a Double-Network Aerogel Microsphere","authors":"Lu Zhang, Ming-Yi Sun, Xiang-Yu Li, Meng-Yuan Liu, Hong-Yu Chu, Chong-Chen Wang, Peng Wang, Xiao-Hong Yi, Yi Wang, Jiguang Deng","doi":"10.1021/acssuschemeng.5c00543","DOIUrl":null,"url":null,"abstract":"An environmentally friendly adsorbent for recovering nuclear energy source U(VI) from wastewater plays a crucial role in resource recovery and environmental preservation. In this work, a double-network aerogel adsorbent composite constructed from sodium alginate, poly(acrylic acid), and NH<sub>2</sub>-MIL-125 (NM@SA) was fabricated by a mild method, which was adopted to remove and concentrate U(VI) in the corresponding simulated wastewater samples. According to the results of adsorption kinetic and isotherm models, the adsorption of U(VI) on NM@SA was a monolayer chemisorption process. The maximum adsorption capacity of NM@SA for U(VI) calculated from the Langmuir model was 703.6 mg·g<sup>–1</sup>. In addition, the adsorbent maintained excellent adsorption capacity, recoverability, and reuse in large-scale operation. The same abilities can be demonstrated in real seawater environments. Finally, the potential adsorption mechanisms of U(VI) on NM@SA were discussed in conjunction with the experimental determination and characterization results. Overall, this study introduces an advantageous research approach for treating U(VI)-containing radioactive wastewater.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"40 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.5c00543","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

An environmentally friendly adsorbent for recovering nuclear energy source U(VI) from wastewater plays a crucial role in resource recovery and environmental preservation. In this work, a double-network aerogel adsorbent composite constructed from sodium alginate, poly(acrylic acid), and NH2-MIL-125 (NM@SA) was fabricated by a mild method, which was adopted to remove and concentrate U(VI) in the corresponding simulated wastewater samples. According to the results of adsorption kinetic and isotherm models, the adsorption of U(VI) on NM@SA was a monolayer chemisorption process. The maximum adsorption capacity of NM@SA for U(VI) calculated from the Langmuir model was 703.6 mg·g–1. In addition, the adsorbent maintained excellent adsorption capacity, recoverability, and reuse in large-scale operation. The same abilities can be demonstrated in real seawater environments. Finally, the potential adsorption mechanisms of U(VI) on NM@SA were discussed in conjunction with the experimental determination and characterization results. Overall, this study introduces an advantageous research approach for treating U(VI)-containing radioactive wastewater.

Abstract Image

双网气凝胶微球固定NH2-MIL-125萃取放射性废水中的铀
从废水中回收核能源U(VI)的环境友好型吸附剂对资源回收和环境保护具有重要作用。本研究以海藻酸钠、聚丙烯酸和NH2-MIL-125 (NM@SA)为原料,采用温和法制备了双网状气凝胶吸附剂复合材料,用于模拟废水样品中U(VI)的去除和浓缩。吸附动力学和等温线模型表明,在NM@SA上吸附U(VI)为单层化学吸附过程。根据Langmuir模型计算,NM@SA对U(VI)的最大吸附量为703.6 mg·g-1。此外,该吸附剂在大规模操作中保持了良好的吸附能力、可回收性和可重复使用性。同样的能力也可以在真实的海水环境中得到证明。最后结合实验测定和表征结果,讨论了U(VI)在NM@SA上的潜在吸附机理。总的来说,本研究为处理含U(VI)放射性废水提供了一条有利的研究途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信