Making Photoresponsive Metal–Organic Frameworks an Effective Class of Heterogeneous Photocatalyst

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Rui Liu, Hao Wu, Hoi Ying Chung, Yun Hau Ng
{"title":"Making Photoresponsive Metal–Organic Frameworks an Effective Class of Heterogeneous Photocatalyst","authors":"Rui Liu, Hao Wu, Hoi Ying Chung, Yun Hau Ng","doi":"10.1002/adfm.202421318","DOIUrl":null,"url":null,"abstract":"A highly effective photocatalyst is the core component of photocatalytic energy conversion. Recently, photoresponsive metal–organic frameworks (MOFs) photocatalysts have exhibited convincing potential and become the hotspot research direction because of their dramatic advantages in enhancing light-harvesting capability, charge transfer efficiency, and catalytic performance of surface reactions in a photocatalytic system. In-depth interpretations of the photoresponsive MOFs-based photocatalysts have been constructed, and more insightful understandings of these materials can be obtained by advanced characterizations and accurate theoretical studies, which provide a solid platform to predict the mechanism and applications in photocatalysis. This review summarizes the recent advances in photoresponsive MOF-based photocatalysts for solar-to-chemical energy conversion. A general background of photoresponsive MOF photocatalysts is provided initially. A brief discussion of the possible roles of photoresponsive MOFs in photocatalysis is then provided. After that, the advanced characterization techniques for photoresponsive MOF photocatalysts are presented. After obtaining a fundamental understanding of photoresponsive MOF-based photocatalysts, their multifold applications are highlighted. Finally, the future challenges and perspectives of photoresponsive MOF photocatalysts are proposed. This review is expected to motivate the exploration of novel photoresponsive MOF-based photocatalysts and drive future development in this burgeoning field.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"11 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421318","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A highly effective photocatalyst is the core component of photocatalytic energy conversion. Recently, photoresponsive metal–organic frameworks (MOFs) photocatalysts have exhibited convincing potential and become the hotspot research direction because of their dramatic advantages in enhancing light-harvesting capability, charge transfer efficiency, and catalytic performance of surface reactions in a photocatalytic system. In-depth interpretations of the photoresponsive MOFs-based photocatalysts have been constructed, and more insightful understandings of these materials can be obtained by advanced characterizations and accurate theoretical studies, which provide a solid platform to predict the mechanism and applications in photocatalysis. This review summarizes the recent advances in photoresponsive MOF-based photocatalysts for solar-to-chemical energy conversion. A general background of photoresponsive MOF photocatalysts is provided initially. A brief discussion of the possible roles of photoresponsive MOFs in photocatalysis is then provided. After that, the advanced characterization techniques for photoresponsive MOF photocatalysts are presented. After obtaining a fundamental understanding of photoresponsive MOF-based photocatalysts, their multifold applications are highlighted. Finally, the future challenges and perspectives of photoresponsive MOF photocatalysts are proposed. This review is expected to motivate the exploration of novel photoresponsive MOF-based photocatalysts and drive future development in this burgeoning field.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信