Neutrophil Extracellular Traps: Emerging Biomarker and Prototype of Functional Materials

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bo Pang, Liping Wen, Linlin Zheng, Jia Wei, Tengda Xu, Yongyang Song, Juan Li, Shutao Wang
{"title":"Neutrophil Extracellular Traps: Emerging Biomarker and Prototype of Functional Materials","authors":"Bo Pang, Liping Wen, Linlin Zheng, Jia Wei, Tengda Xu, Yongyang Song, Juan Li, Shutao Wang","doi":"10.1002/adfm.202425035","DOIUrl":null,"url":null,"abstract":"Functional biomaterials composed of multiple biomacromolecules have significant advantages over those made from a single type. However, harmoniously integrating various biomacromolecules remains challenging. Neutrophil extracellular traps (NETs), an emerging biological structure released from neutrophils, serve as a natural prototype worth investigating and learning from. NETs consist of intricate biomacromolecules and exhibit web-like microstructure, endowing them with multifaceted roles in both physiological and pathological processes. In this review, research progress is systematically examined on NETs from a materials science perspective. First, the origin and transformation of NETs are introduced, and their functional mechanisms of various NET components are thoroughly dissected rather than conventionally treating NETs as a single entity. Second, given their complex components and functions, NETs are revealed as a potential biomarker for disease prediction. Third, typical characterization technologies for the analysis of NETs are summarized. Fourth, artificial materials inspired by NETs are discussed. In addition, the natural regulatory processes of NETs provide bio-inspired prototypes for the design of advanced functional materials. Finally, perspectives on the opportunities and challenges in advancing NETs are presented as emerging biomarkers and models for the development of bio-inspired materials.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"183 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202425035","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Functional biomaterials composed of multiple biomacromolecules have significant advantages over those made from a single type. However, harmoniously integrating various biomacromolecules remains challenging. Neutrophil extracellular traps (NETs), an emerging biological structure released from neutrophils, serve as a natural prototype worth investigating and learning from. NETs consist of intricate biomacromolecules and exhibit web-like microstructure, endowing them with multifaceted roles in both physiological and pathological processes. In this review, research progress is systematically examined on NETs from a materials science perspective. First, the origin and transformation of NETs are introduced, and their functional mechanisms of various NET components are thoroughly dissected rather than conventionally treating NETs as a single entity. Second, given their complex components and functions, NETs are revealed as a potential biomarker for disease prediction. Third, typical characterization technologies for the analysis of NETs are summarized. Fourth, artificial materials inspired by NETs are discussed. In addition, the natural regulatory processes of NETs provide bio-inspired prototypes for the design of advanced functional materials. Finally, perspectives on the opportunities and challenges in advancing NETs are presented as emerging biomarkers and models for the development of bio-inspired materials.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信