{"title":"Establishing design principles for functional additives in antimony chalcogenide solar cells","authors":"Matthew Sutton, Neil Robertson, Tayebeh Ameri","doi":"10.1039/d5ta00947b","DOIUrl":null,"url":null,"abstract":"Antimony chalcogenide solar cells are a promising thin-film solar technology, offering a tunable bandgap, high intrinsic stability, and a large absorption coefficient. Their solution-processability enables the straightforward incorporation of chemical additives. While many additives have been explored, their underlying chemical mechanisms remain poorly understood. In this study, we examine the chemical mechanism of a proven additive, EDTA, and leverage these insights to develop a screening process for identifying additives that match or surpass its performance. Our findings reveal a dual role of EDTA and similar molecules: (i) Sb<small><sup>3+</sup></small> chelation, enhancing Sb<small><sub>2</sub></small>S<small><sub>3</sub></small> film quality, and (ii) pH reduction in the precursor solution, suppressing Sb<small><sub>2</sub></small>O<small><sub>3</sub></small> formation. Additionally, we propose a chemical mechanism for the <em>in situ</em> conversion of Sb<small><sub>2</sub></small>O<small><sub>3</sub></small> to Sb<small><sub>2</sub></small>S<small><sub>3</sub></small>. These insights will aid in the rational design of future additives and establish general guidelines for optimizing the growth conditions of efficient antimony chalcogenide solar absorbers under widely used hydrothermal conditions.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"36 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta00947b","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Antimony chalcogenide solar cells are a promising thin-film solar technology, offering a tunable bandgap, high intrinsic stability, and a large absorption coefficient. Their solution-processability enables the straightforward incorporation of chemical additives. While many additives have been explored, their underlying chemical mechanisms remain poorly understood. In this study, we examine the chemical mechanism of a proven additive, EDTA, and leverage these insights to develop a screening process for identifying additives that match or surpass its performance. Our findings reveal a dual role of EDTA and similar molecules: (i) Sb3+ chelation, enhancing Sb2S3 film quality, and (ii) pH reduction in the precursor solution, suppressing Sb2O3 formation. Additionally, we propose a chemical mechanism for the in situ conversion of Sb2O3 to Sb2S3. These insights will aid in the rational design of future additives and establish general guidelines for optimizing the growth conditions of efficient antimony chalcogenide solar absorbers under widely used hydrothermal conditions.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.