{"title":"Selective phase separation of transcription factors is driven by orthogonal molecular grammar","authors":"Mark D. Driver, Patrick R. Onck","doi":"10.1038/s41467-025-58445-7","DOIUrl":null,"url":null,"abstract":"<p>Protein production is critically dependent on gene transcription rates, which are regulated by RNA polymerase and a large collection of different transcription factors (TFs). How these transcription factors selectively address different genes is only partially known. Recent discoveries show that the differential condensation of separate TF families through phase separation may contribute to selectivity. Here we address this by conducting phase separation studies on six TFs from three different TF families with residue-scale coarse-grained molecular dynamics simulations. Our exploration of ternary TF phase diagrams reveals four dominant sticker motifs and two orthogonal driving forces that dictate the resultant condensate morphology, pointing to sequence-dependent orthogonal molecular grammar as a generic molecular mechanism that drives selective transcriptional condensation in gene expression.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"72 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58445-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Protein production is critically dependent on gene transcription rates, which are regulated by RNA polymerase and a large collection of different transcription factors (TFs). How these transcription factors selectively address different genes is only partially known. Recent discoveries show that the differential condensation of separate TF families through phase separation may contribute to selectivity. Here we address this by conducting phase separation studies on six TFs from three different TF families with residue-scale coarse-grained molecular dynamics simulations. Our exploration of ternary TF phase diagrams reveals four dominant sticker motifs and two orthogonal driving forces that dictate the resultant condensate morphology, pointing to sequence-dependent orthogonal molecular grammar as a generic molecular mechanism that drives selective transcriptional condensation in gene expression.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.