Controlled Growth of Oligophenylene‐Structures on Graphene for Facile Secondary functionalization.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Christian Eberhard Halbig, Markus R. Heinrich, Felix Fels, Shenquan Wei, Siegfried Eigler, Robert Schusterbauer, Ievgen Donskyi
{"title":"Controlled Growth of Oligophenylene‐Structures on Graphene for Facile Secondary functionalization.","authors":"Christian Eberhard Halbig, Markus R. Heinrich, Felix Fels, Shenquan Wei, Siegfried Eigler, Robert Schusterbauer, Ievgen Donskyi","doi":"10.1002/anie.202504482","DOIUrl":null,"url":null,"abstract":"Functionalization of graphene derivatives is a common approach to tune material properties for use in various applications. Due to the low reactivity of the unsaturated carbon lattice of graphene, not only are few chemical approaches suitable for successful functionalization, such as those involving highly reactive in situ formed radical species or nitrene and carbene compounds, but also the degree of functionalization is usually limited, modifying only a few percent of the carbon atoms. Typically, uncontrolled side reactions such as homocoupling and oligomerization of newly introduced functional groups can occur instead of direct coupling to the carbon lattice. We want to turn this unwanted side reaction into an advantage and use intentionally formed covalent dendrimeric oligophenylene structures for secondary functionalization. We show that these oligomeric structures can be grown to specific thicknesses and used for further functionalization with bromomethyl groups at high density on the surface. This functionalization opens further avenues for subsequent nucleophilic substitution, as exemplified by the introduction of versatile azide, nitrile, and phosphonate groups. The results presented here are not only applicable to large oligophenylene structures, but also demonstrate that, in principle, single aryl moieties on graphene of any size and density can be successfully functionalized.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"166 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202504482","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Functionalization of graphene derivatives is a common approach to tune material properties for use in various applications. Due to the low reactivity of the unsaturated carbon lattice of graphene, not only are few chemical approaches suitable for successful functionalization, such as those involving highly reactive in situ formed radical species or nitrene and carbene compounds, but also the degree of functionalization is usually limited, modifying only a few percent of the carbon atoms. Typically, uncontrolled side reactions such as homocoupling and oligomerization of newly introduced functional groups can occur instead of direct coupling to the carbon lattice. We want to turn this unwanted side reaction into an advantage and use intentionally formed covalent dendrimeric oligophenylene structures for secondary functionalization. We show that these oligomeric structures can be grown to specific thicknesses and used for further functionalization with bromomethyl groups at high density on the surface. This functionalization opens further avenues for subsequent nucleophilic substitution, as exemplified by the introduction of versatile azide, nitrile, and phosphonate groups. The results presented here are not only applicable to large oligophenylene structures, but also demonstrate that, in principle, single aryl moieties on graphene of any size and density can be successfully functionalized.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信