Long Zeng, Xing-Gang Wu, Dan-Dan Hu, Hai-Bing Fu, Tao Zhong
{"title":"Longitudinal leading-twist distribution amplitude of the P11 -state b1(1235) meson and its implications on B→b1(1235)ℓ+νℓ decays","authors":"Long Zeng, Xing-Gang Wu, Dan-Dan Hu, Hai-Bing Fu, Tao Zhong","doi":"10.1103/physrevd.111.056030","DOIUrl":null,"url":null,"abstract":"In the paper, we derive the ξ</a:mi></a:math> moments <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo stretchy=\"false\">⟨</c:mo><c:msubsup><c:mi>ξ</c:mi><c:mrow><c:mn>2</c:mn><c:mo>;</c:mo><c:msub><c:mi>b</c:mi><c:mn>1</c:mn></c:msub></c:mrow><c:mrow><c:mi>n</c:mi><c:mo>;</c:mo><c:mo stretchy=\"false\">∥</c:mo></c:mrow></c:msubsup><c:mo stretchy=\"false\">⟩</c:mo></c:math> of the longitudinal leading-twist distribution amplitude <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:msubsup><h:mi>ϕ</h:mi><h:mrow><h:mn>2</h:mn><h:mo>;</h:mo><h:msub><h:mi>b</h:mi><h:mn>1</h:mn></h:msub></h:mrow><h:mo stretchy=\"false\">∥</h:mo></h:msubsup></h:math> for the <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mmultiscripts><k:mrow><k:msub><k:mrow><k:mi>P</k:mi></k:mrow><k:mrow><k:mn>1</k:mn></k:mrow></k:msub></k:mrow><k:mprescripts/><k:none/><k:mrow><k:mn>1</k:mn></k:mrow></k:mmultiscripts></k:mrow></k:math>-state <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>b</m:mi><m:mn>1</m:mn></m:msub><m:mo stretchy=\"false\">(</m:mo><m:mn>1235</m:mn><m:mo stretchy=\"false\">)</m:mo></m:math> meson by using the QCD sum rules under the background field theory. Considering the contributions from the vacuum condensates up to dimension six, its first two nonzero <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>ξ</q:mi></q:math> moments at the scale 1 GeV are <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mo stretchy=\"false\">⟨</s:mo><s:msubsup><s:mi>ξ</s:mi><s:mrow><s:mn>2</s:mn><s:mo>;</s:mo><s:msub><s:mi>b</s:mi><s:mn>1</s:mn></s:msub></s:mrow><s:mrow><s:mn>1</s:mn><s:mo>;</s:mo><s:mo stretchy=\"false\">∥</s:mo></s:mrow></s:msubsup><s:mo stretchy=\"false\">⟩</s:mo><s:mo>=</s:mo><s:mo>−</s:mo><s:mn>0.64</s:mn><s:msubsup><s:mn>7</s:mn><s:mrow><s:mo>−</s:mo><s:mn>0.113</s:mn></s:mrow><s:mrow><s:mo>+</s:mo><s:mn>0.118</s:mn></s:mrow></s:msubsup></s:math> and <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mo stretchy=\"false\">⟨</x:mo><x:msubsup><x:mi>ξ</x:mi><x:mrow><x:mn>2</x:mn><x:mo>;</x:mo><x:msub><x:mi>b</x:mi><x:mn>1</x:mn></x:msub></x:mrow><x:mrow><x:mn>3</x:mn><x:mo>;</x:mo><x:mo stretchy=\"false\">∥</x:mo></x:mrow></x:msubsup><x:mo stretchy=\"false\">⟩</x:mo><x:mo>=</x:mo><x:mo>−</x:mo><x:mn>0.32</x:mn><x:msubsup><x:mn>8</x:mn><x:mrow><x:mo>−</x:mo><x:mn>0.052</x:mn></x:mrow><x:mrow><x:mo>+</x:mo><x:mn>0.055</x:mn></x:mrow></x:msubsup></x:math>, respectively. Using those moments, we then fix the Gegenbauer expansion series of <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:msubsup><cb:mi>ϕ</cb:mi><cb:mrow><cb:mn>2</cb:mn><cb:mo>;</cb:mo><cb:msub><cb:mi>b</cb:mi><cb:mn>1</cb:mn></cb:msub></cb:mrow><cb:mo stretchy=\"false\">∥</cb:mo></cb:msubsup></cb:math> and apply it to calculate <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:mi>B</fb:mi><fb:mo stretchy=\"false\">→</fb:mo><fb:msub><fb:mi>b</fb:mi><fb:mn>1</fb:mn></fb:msub><fb:mo stretchy=\"false\">(</fb:mo><fb:mn>1235</fb:mn><fb:mo stretchy=\"false\">)</fb:mo></fb:math> transition form factors (TFFs) that are derived by using the QCD light-cone sum rules. Those TFFs are then extrapolated to the physically allowable <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:msup><kb:mi>q</kb:mi><kb:mn>2</kb:mn></kb:msup></kb:math> range via the simplified series expansion. As for the branching fractions, we obtain <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mi mathvariant=\"script\">B</mb:mi><mb:mo stretchy=\"false\">(</mb:mo><mb:msup><mb:mover accent=\"true\"><mb:mi>B</mb:mi><mb:mo stretchy=\"false\">¯</mb:mo></mb:mover><mb:mn>0</mb:mn></mb:msup><mb:mo stretchy=\"false\">→</mb:mo><mb:msub><mb:mi>b</mb:mi><mb:mn>1</mb:mn></mb:msub><mb:mo stretchy=\"false\">(</mb:mo><mb:mn>1235</mb:mn><mb:msup><mb:mo stretchy=\"false\">)</mb:mo><mb:mo>+</mb:mo></mb:msup><mb:msup><mb:mi>e</mb:mi><mb:mo>−</mb:mo></mb:msup><mb:msub><mb:mover accent=\"true\"><mb:mi>ν</mb:mi><mb:mo stretchy=\"false\">¯</mb:mo></mb:mover><mb:mi>e</mb:mi></mb:msub><mb:mo stretchy=\"false\">)</mb:mo><mb:mo>=</mb:mo><mb:mn>2.17</mb:mn><mb:msubsup><mb:mn>9</mb:mn><mb:mrow><mb:mo>−</mb:mo><mb:mn>0.422</mb:mn></mb:mrow><mb:mrow><mb:mo>+</mb:mo><mb:mn>0.553</mb:mn></mb:mrow></mb:msubsup><mb:mo>×</mb:mo><mb:msup><mb:mn>10</mb:mn><mb:mrow><mb:mo>−</mb:mo><mb:mn>4</mb:mn></mb:mrow></mb:msup></mb:math>, <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:mi mathvariant=\"script\">B</yb:mi><yb:mo stretchy=\"false\">(</yb:mo><yb:msup><yb:mi>B</yb:mi><yb:mn>0</yb:mn></yb:msup><yb:mo stretchy=\"false\">→</yb:mo><yb:msub><yb:mi>b</yb:mi><yb:mn>1</yb:mn></yb:msub><yb:mo stretchy=\"false\">(</yb:mo><yb:mn>1235</yb:mn><yb:msup><yb:mo stretchy=\"false\">)</yb:mo><yb:mo>−</yb:mo></yb:msup><yb:msup><yb:mi>μ</yb:mi><yb:mo>+</yb:mo></yb:msup><yb:msub><yb:mi>ν</yb:mi><yb:mi>μ</yb:mi></yb:msub><yb:mo stretchy=\"false\">)</yb:mo><yb:mo>=</yb:mo><yb:mn>2.16</yb:mn><yb:msubsup><yb:mn>6</yb:mn><yb:mrow><yb:mo>−</yb:mo><yb:mn>0.415</yb:mn></yb:mrow><yb:mrow><yb:mo>+</yb:mo><yb:mn>0.544</yb:mn></yb:mrow></yb:msubsup><yb:mo>×</yb:mo><yb:msup><yb:mn>10</yb:mn><yb:mrow><yb:mo>−</yb:mo><yb:mn>4</yb:mn></yb:mrow></yb:msup></yb:math>, <gc:math xmlns:gc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gc:mi mathvariant=\"script\">B</gc:mi><gc:mo stretchy=\"false\">(</gc:mo><gc:msup><gc:mi>B</gc:mi><gc:mo>+</gc:mo></gc:msup><gc:mo stretchy=\"false\">→</gc:mo><gc:mspace linebreak=\"goodbreak\"/><gc:msub><gc:mi>b</gc:mi><gc:mn>1</gc:mn></gc:msub><gc:mo stretchy=\"false\">(</gc:mo><gc:mn>1235</gc:mn><gc:msup><gc:mo stretchy=\"false\">)</gc:mo><gc:mn>0</gc:mn></gc:msup><gc:msup><gc:mi>e</gc:mi><gc:mo>+</gc:mo></gc:msup><gc:msub><gc:mi>ν</gc:mi><gc:mi>e</gc:mi></gc:msub><gc:mo stretchy=\"false\">)</gc:mo><gc:mo>=</gc:mo><gc:mn>2.35</gc:mn><gc:msubsup><gc:mn>3</gc:mn><gc:mrow><gc:mo>−</gc:mo><gc:mn>0.456</gc:mn></gc:mrow><gc:mrow><gc:mo>+</gc:mo><gc:mn>0.597</gc:mn></gc:mrow></gc:msubsup><gc:mo>×</gc:mo><gc:msup><gc:mn>10</gc:mn><gc:mrow><gc:mo>−</gc:mo><gc:mn>4</gc:mn></gc:mrow></gc:msup></gc:math>, and <pc:math xmlns:pc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pc:mi mathvariant=\"script\">B</pc:mi><pc:mo stretchy=\"false\">(</pc:mo><pc:msup><pc:mi>B</pc:mi><pc:mo>+</pc:mo></pc:msup><pc:mo stretchy=\"false\">→</pc:mo><pc:msub><pc:mi>b</pc:mi><pc:mn>1</pc:mn></pc:msub><pc:mo stretchy=\"false\">(</pc:mo><pc:mn>1235</pc:mn><pc:msup><pc:mo stretchy=\"false\">)</pc:mo><pc:mn>0</pc:mn></pc:msup><pc:msup><pc:mi>μ</pc:mi><pc:mo>+</pc:mo></pc:msup><pc:msub><pc:mi>ν</pc:mi><pc:mi>μ</pc:mi></pc:msub><pc:mo stretchy=\"false\">)</pc:mo><pc:mo>=</pc:mo><pc:mn>2.33</pc:mn><pc:msubsup><pc:mn>9</pc:mn><pc:mrow><pc:mo>−</pc:mo><pc:mn>0.448</pc:mn></pc:mrow><pc:mrow><pc:mo>+</pc:mo><pc:mn>0.587</pc:mn></pc:mrow></pc:msubsup><pc:mo>×</pc:mo><pc:msup><pc:mn>10</pc:mn><pc:mrow><pc:mo>−</pc:mo><pc:mn>4</pc:mn></pc:mrow></pc:msup></pc:math>, respectively. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"42 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.056030","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
In the paper, we derive the ξ moments ⟨ξ2;b1n;∥⟩ of the longitudinal leading-twist distribution amplitude ϕ2;b1∥ for the P11-state b1(1235) meson by using the QCD sum rules under the background field theory. Considering the contributions from the vacuum condensates up to dimension six, its first two nonzero ξ moments at the scale 1 GeV are ⟨ξ2;b11;∥⟩=−0.647−0.113+0.118 and ⟨ξ2;b13;∥⟩=−0.328−0.052+0.055, respectively. Using those moments, we then fix the Gegenbauer expansion series of ϕ2;b1∥ and apply it to calculate B→b1(1235) transition form factors (TFFs) that are derived by using the QCD light-cone sum rules. Those TFFs are then extrapolated to the physically allowable q2 range via the simplified series expansion. As for the branching fractions, we obtain B(B¯0→b1(1235)+e−ν¯e)=2.179−0.422+0.553×10−4, B(B0→b1(1235)−μ+νμ)=2.166−0.415+0.544×10−4, B(B+→b1(1235)0e+νe)=2.353−0.456+0.597×10−4, and B(B+→b1(1235)0μ+νμ)=2.339−0.448+0.587×10−4, respectively. Published by the American Physical Society2025
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.