Longitudinal leading-twist distribution amplitude of the P11 -state b1(1235) meson and its implications on B→b1(1235)ℓ+νℓ decays

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Long Zeng, Xing-Gang Wu, Dan-Dan Hu, Hai-Bing Fu, Tao Zhong
{"title":"Longitudinal leading-twist distribution amplitude of the P11 -state b1(1235) meson and its implications on B→b1(1235)ℓ+νℓ decays","authors":"Long Zeng, Xing-Gang Wu, Dan-Dan Hu, Hai-Bing Fu, Tao Zhong","doi":"10.1103/physrevd.111.056030","DOIUrl":null,"url":null,"abstract":"In the paper, we derive the ξ</a:mi></a:math> moments <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mo stretchy=\"false\">⟨</c:mo><c:msubsup><c:mi>ξ</c:mi><c:mrow><c:mn>2</c:mn><c:mo>;</c:mo><c:msub><c:mi>b</c:mi><c:mn>1</c:mn></c:msub></c:mrow><c:mrow><c:mi>n</c:mi><c:mo>;</c:mo><c:mo stretchy=\"false\">∥</c:mo></c:mrow></c:msubsup><c:mo stretchy=\"false\">⟩</c:mo></c:math> of the longitudinal leading-twist distribution amplitude <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><h:msubsup><h:mi>ϕ</h:mi><h:mrow><h:mn>2</h:mn><h:mo>;</h:mo><h:msub><h:mi>b</h:mi><h:mn>1</h:mn></h:msub></h:mrow><h:mo stretchy=\"false\">∥</h:mo></h:msubsup></h:math> for the <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mrow><k:mmultiscripts><k:mrow><k:msub><k:mrow><k:mi>P</k:mi></k:mrow><k:mrow><k:mn>1</k:mn></k:mrow></k:msub></k:mrow><k:mprescripts/><k:none/><k:mrow><k:mn>1</k:mn></k:mrow></k:mmultiscripts></k:mrow></k:math>-state <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:msub><m:mi>b</m:mi><m:mn>1</m:mn></m:msub><m:mo stretchy=\"false\">(</m:mo><m:mn>1235</m:mn><m:mo stretchy=\"false\">)</m:mo></m:math> meson by using the QCD sum rules under the background field theory. Considering the contributions from the vacuum condensates up to dimension six, its first two nonzero <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>ξ</q:mi></q:math> moments at the scale 1 GeV are <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mo stretchy=\"false\">⟨</s:mo><s:msubsup><s:mi>ξ</s:mi><s:mrow><s:mn>2</s:mn><s:mo>;</s:mo><s:msub><s:mi>b</s:mi><s:mn>1</s:mn></s:msub></s:mrow><s:mrow><s:mn>1</s:mn><s:mo>;</s:mo><s:mo stretchy=\"false\">∥</s:mo></s:mrow></s:msubsup><s:mo stretchy=\"false\">⟩</s:mo><s:mo>=</s:mo><s:mo>−</s:mo><s:mn>0.64</s:mn><s:msubsup><s:mn>7</s:mn><s:mrow><s:mo>−</s:mo><s:mn>0.113</s:mn></s:mrow><s:mrow><s:mo>+</s:mo><s:mn>0.118</s:mn></s:mrow></s:msubsup></s:math> and <x:math xmlns:x=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><x:mo stretchy=\"false\">⟨</x:mo><x:msubsup><x:mi>ξ</x:mi><x:mrow><x:mn>2</x:mn><x:mo>;</x:mo><x:msub><x:mi>b</x:mi><x:mn>1</x:mn></x:msub></x:mrow><x:mrow><x:mn>3</x:mn><x:mo>;</x:mo><x:mo stretchy=\"false\">∥</x:mo></x:mrow></x:msubsup><x:mo stretchy=\"false\">⟩</x:mo><x:mo>=</x:mo><x:mo>−</x:mo><x:mn>0.32</x:mn><x:msubsup><x:mn>8</x:mn><x:mrow><x:mo>−</x:mo><x:mn>0.052</x:mn></x:mrow><x:mrow><x:mo>+</x:mo><x:mn>0.055</x:mn></x:mrow></x:msubsup></x:math>, respectively. Using those moments, we then fix the Gegenbauer expansion series of <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:msubsup><cb:mi>ϕ</cb:mi><cb:mrow><cb:mn>2</cb:mn><cb:mo>;</cb:mo><cb:msub><cb:mi>b</cb:mi><cb:mn>1</cb:mn></cb:msub></cb:mrow><cb:mo stretchy=\"false\">∥</cb:mo></cb:msubsup></cb:math> and apply it to calculate <fb:math xmlns:fb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><fb:mi>B</fb:mi><fb:mo stretchy=\"false\">→</fb:mo><fb:msub><fb:mi>b</fb:mi><fb:mn>1</fb:mn></fb:msub><fb:mo stretchy=\"false\">(</fb:mo><fb:mn>1235</fb:mn><fb:mo stretchy=\"false\">)</fb:mo></fb:math> transition form factors (TFFs) that are derived by using the QCD light-cone sum rules. Those TFFs are then extrapolated to the physically allowable <kb:math xmlns:kb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><kb:msup><kb:mi>q</kb:mi><kb:mn>2</kb:mn></kb:msup></kb:math> range via the simplified series expansion. As for the branching fractions, we obtain <mb:math xmlns:mb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><mb:mi mathvariant=\"script\">B</mb:mi><mb:mo stretchy=\"false\">(</mb:mo><mb:msup><mb:mover accent=\"true\"><mb:mi>B</mb:mi><mb:mo stretchy=\"false\">¯</mb:mo></mb:mover><mb:mn>0</mb:mn></mb:msup><mb:mo stretchy=\"false\">→</mb:mo><mb:msub><mb:mi>b</mb:mi><mb:mn>1</mb:mn></mb:msub><mb:mo stretchy=\"false\">(</mb:mo><mb:mn>1235</mb:mn><mb:msup><mb:mo stretchy=\"false\">)</mb:mo><mb:mo>+</mb:mo></mb:msup><mb:msup><mb:mi>e</mb:mi><mb:mo>−</mb:mo></mb:msup><mb:msub><mb:mover accent=\"true\"><mb:mi>ν</mb:mi><mb:mo stretchy=\"false\">¯</mb:mo></mb:mover><mb:mi>e</mb:mi></mb:msub><mb:mo stretchy=\"false\">)</mb:mo><mb:mo>=</mb:mo><mb:mn>2.17</mb:mn><mb:msubsup><mb:mn>9</mb:mn><mb:mrow><mb:mo>−</mb:mo><mb:mn>0.422</mb:mn></mb:mrow><mb:mrow><mb:mo>+</mb:mo><mb:mn>0.553</mb:mn></mb:mrow></mb:msubsup><mb:mo>×</mb:mo><mb:msup><mb:mn>10</mb:mn><mb:mrow><mb:mo>−</mb:mo><mb:mn>4</mb:mn></mb:mrow></mb:msup></mb:math>, <yb:math xmlns:yb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><yb:mi mathvariant=\"script\">B</yb:mi><yb:mo stretchy=\"false\">(</yb:mo><yb:msup><yb:mi>B</yb:mi><yb:mn>0</yb:mn></yb:msup><yb:mo stretchy=\"false\">→</yb:mo><yb:msub><yb:mi>b</yb:mi><yb:mn>1</yb:mn></yb:msub><yb:mo stretchy=\"false\">(</yb:mo><yb:mn>1235</yb:mn><yb:msup><yb:mo stretchy=\"false\">)</yb:mo><yb:mo>−</yb:mo></yb:msup><yb:msup><yb:mi>μ</yb:mi><yb:mo>+</yb:mo></yb:msup><yb:msub><yb:mi>ν</yb:mi><yb:mi>μ</yb:mi></yb:msub><yb:mo stretchy=\"false\">)</yb:mo><yb:mo>=</yb:mo><yb:mn>2.16</yb:mn><yb:msubsup><yb:mn>6</yb:mn><yb:mrow><yb:mo>−</yb:mo><yb:mn>0.415</yb:mn></yb:mrow><yb:mrow><yb:mo>+</yb:mo><yb:mn>0.544</yb:mn></yb:mrow></yb:msubsup><yb:mo>×</yb:mo><yb:msup><yb:mn>10</yb:mn><yb:mrow><yb:mo>−</yb:mo><yb:mn>4</yb:mn></yb:mrow></yb:msup></yb:math>, <gc:math xmlns:gc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gc:mi mathvariant=\"script\">B</gc:mi><gc:mo stretchy=\"false\">(</gc:mo><gc:msup><gc:mi>B</gc:mi><gc:mo>+</gc:mo></gc:msup><gc:mo stretchy=\"false\">→</gc:mo><gc:mspace linebreak=\"goodbreak\"/><gc:msub><gc:mi>b</gc:mi><gc:mn>1</gc:mn></gc:msub><gc:mo stretchy=\"false\">(</gc:mo><gc:mn>1235</gc:mn><gc:msup><gc:mo stretchy=\"false\">)</gc:mo><gc:mn>0</gc:mn></gc:msup><gc:msup><gc:mi>e</gc:mi><gc:mo>+</gc:mo></gc:msup><gc:msub><gc:mi>ν</gc:mi><gc:mi>e</gc:mi></gc:msub><gc:mo stretchy=\"false\">)</gc:mo><gc:mo>=</gc:mo><gc:mn>2.35</gc:mn><gc:msubsup><gc:mn>3</gc:mn><gc:mrow><gc:mo>−</gc:mo><gc:mn>0.456</gc:mn></gc:mrow><gc:mrow><gc:mo>+</gc:mo><gc:mn>0.597</gc:mn></gc:mrow></gc:msubsup><gc:mo>×</gc:mo><gc:msup><gc:mn>10</gc:mn><gc:mrow><gc:mo>−</gc:mo><gc:mn>4</gc:mn></gc:mrow></gc:msup></gc:math>, and <pc:math xmlns:pc=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><pc:mi mathvariant=\"script\">B</pc:mi><pc:mo stretchy=\"false\">(</pc:mo><pc:msup><pc:mi>B</pc:mi><pc:mo>+</pc:mo></pc:msup><pc:mo stretchy=\"false\">→</pc:mo><pc:msub><pc:mi>b</pc:mi><pc:mn>1</pc:mn></pc:msub><pc:mo stretchy=\"false\">(</pc:mo><pc:mn>1235</pc:mn><pc:msup><pc:mo stretchy=\"false\">)</pc:mo><pc:mn>0</pc:mn></pc:msup><pc:msup><pc:mi>μ</pc:mi><pc:mo>+</pc:mo></pc:msup><pc:msub><pc:mi>ν</pc:mi><pc:mi>μ</pc:mi></pc:msub><pc:mo stretchy=\"false\">)</pc:mo><pc:mo>=</pc:mo><pc:mn>2.33</pc:mn><pc:msubsup><pc:mn>9</pc:mn><pc:mrow><pc:mo>−</pc:mo><pc:mn>0.448</pc:mn></pc:mrow><pc:mrow><pc:mo>+</pc:mo><pc:mn>0.587</pc:mn></pc:mrow></pc:msubsup><pc:mo>×</pc:mo><pc:msup><pc:mn>10</pc:mn><pc:mrow><pc:mo>−</pc:mo><pc:mn>4</pc:mn></pc:mrow></pc:msup></pc:math>, respectively. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"42 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.056030","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper, we derive the ξ moments ξ2;b1n; of the longitudinal leading-twist distribution amplitude ϕ2;b1 for the P11-state b1(1235) meson by using the QCD sum rules under the background field theory. Considering the contributions from the vacuum condensates up to dimension six, its first two nonzero ξ moments at the scale 1 GeV are ξ2;b11;=0.6470.113+0.118 and ξ2;b13;=0.3280.052+0.055, respectively. Using those moments, we then fix the Gegenbauer expansion series of ϕ2;b1 and apply it to calculate Bb1(1235) transition form factors (TFFs) that are derived by using the QCD light-cone sum rules. Those TFFs are then extrapolated to the physically allowable q2 range via the simplified series expansion. As for the branching fractions, we obtain B(B¯0b1(1235)+eν¯e)=2.1790.422+0.553×104, B(B0b1(1235)μ+νμ)=2.1660.415+0.544×104, B(B+b1(1235)0e+νe)=2.3530.456+0.597×104, and B(B+b1(1235)0μ+νμ)=2.3390.448+0.587×104, respectively. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信