Jingyu Chang, Zida Zheng, Qianqing Jiang, Dianyi Liu
{"title":"200 nm Ultrathin Freestanding Organic Photovoltaics","authors":"Jingyu Chang, Zida Zheng, Qianqing Jiang, Dianyi Liu","doi":"10.1021/acsami.5c00913","DOIUrl":null,"url":null,"abstract":"Ultrathin organic photovoltaics (OPVs) have great application prospects in the field of wearable electronics, such as electronic tattoos, electronic skins, etc. In this study, we report substrate-free ultrathin OPVs with a thickness of approximately 200 nm. The freestanding OPV devices achieve a power conversion efficiency of 11.6% and a power-per-weight ratio of 109.4 W g<sup>–1</sup>, with a weight of 1.06 g m<sup>–2</sup>. The ultrathin OPVs can self-adhere to various surfaces with complex and curved structures, ensuring excellent conformity. Notably, the ultrathin OPV devices demonstrate remarkable mechanical flexibility, maintaining 90% of their initial power conversion efficiency after 1000 compression-stretching cycles and are capable of bending to a radius of less than 2 μm. These attributes make ultrathin OPVs a crucial advancement in expanding the application landscape for wearable electronics and other special applications with ultraflexible and ultralight requests.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"41 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c00913","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrathin organic photovoltaics (OPVs) have great application prospects in the field of wearable electronics, such as electronic tattoos, electronic skins, etc. In this study, we report substrate-free ultrathin OPVs with a thickness of approximately 200 nm. The freestanding OPV devices achieve a power conversion efficiency of 11.6% and a power-per-weight ratio of 109.4 W g–1, with a weight of 1.06 g m–2. The ultrathin OPVs can self-adhere to various surfaces with complex and curved structures, ensuring excellent conformity. Notably, the ultrathin OPV devices demonstrate remarkable mechanical flexibility, maintaining 90% of their initial power conversion efficiency after 1000 compression-stretching cycles and are capable of bending to a radius of less than 2 μm. These attributes make ultrathin OPVs a crucial advancement in expanding the application landscape for wearable electronics and other special applications with ultraflexible and ultralight requests.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.