Polina V. Chernozem, Alexander V. Romashchenko, Olga I. Solovieva, Azhar Zh. Ibraeva, Georgy Nosov, Danila A. Koptsev, Sergey A. Lisitsyn, Maria A. Surmeneva, Dmitry V. Wagner, Evgeny Yu. Gerasimov, Sergey O. Kazantsev, Aleksandr S. Lozhkomoev, Gleb B. Sukhorukov, Roman A. Surmenev, Roman V. Chernozem
{"title":"The Effect of Various Surface Functionalizations of Core–Shell Nanoactuators on Magnetoelectrically Driven Cell Growth","authors":"Polina V. Chernozem, Alexander V. Romashchenko, Olga I. Solovieva, Azhar Zh. Ibraeva, Georgy Nosov, Danila A. Koptsev, Sergey A. Lisitsyn, Maria A. Surmeneva, Dmitry V. Wagner, Evgeny Yu. Gerasimov, Sergey O. Kazantsev, Aleksandr S. Lozhkomoev, Gleb B. Sukhorukov, Roman A. Surmenev, Roman V. Chernozem","doi":"10.1021/acsami.4c21337","DOIUrl":null,"url":null,"abstract":"Magnetoelectric (ME) nanoparticles (NPs) exhibit strong coupling between magnetic and electric properties, enabling wireless control of biological processes through electromagnetic stimulation, which paves the way for diverse biomedical applications. However, the surface functionalization of ME NPs and its impact on their structure, physical properties, and biological response remain largely unexplored. In this study, biocompatible citric acid (CA) and pectin (PEC) were employed to functionalize quasi-spherical ME core–shell NPs comprising a magnetic spinel MnFe<sub>2</sub>O<sub>4</sub> core (∼23 nm) and a ferroelectric perovskite Ba<sub>0.85</sub>Ca<sub>0.15</sub>Zr<sub>0.1</sub>Ti<sub>0.9</sub>O<sub>3</sub> (BCZT) shell (∼5 nm), synthesized using microwave-assisted hydrothermal processing. The surface functionalization led to the formation of covalent bonds between CA and metal ions of NPs via chelation. The surface functionalization with PEC increased ζ-potential values of ME NPs up to −46.2 ± 0.6 mV compared to CA (25.3 ± 1.0 mV). Both MFO@BCZT NPs with CA and PEC exhibited low coercivity values (69 ± 5 and 29 ± 2 Oe, respectively) with a pronounced specific saturation magnetization (6.1 ± 0.2 and 5.2 ± 0.2 emu/g, respectively). No effect of the BCZT shell with subsequent CA (746 ± 22 Oe) and PEC (754 ± 23 Oe) surface functionalizations on the anisotropy field of ME NPs was observed compared to the pristine MFO cores (754 ± 23 Oe). Both CA-/PEC-functionalized MFO@BCZT NPs exhibited ferroelectric behavior with robust piezoresponse (9.95 ± 1.36 and 10.24 ± 2.03 pm/V, respectively) and high ME response (81 × 10<sup>4</sup> and 80 × 10<sup>4</sup> mV·cm<sup>–1</sup>·Oe<sup>–1</sup>, respectively), comparable to the most frequently studied Co-based analogs. <i>In vitro</i> assays demonstrated the ability of the developed ME NPs to control calcium flux, which enables bidirectional regulation of cell proliferation. This work advances the development of efficient and biocompatible ME NPs with promising applications in the noninvasive and targeted stimulation of cell behavior.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"23 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21337","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetoelectric (ME) nanoparticles (NPs) exhibit strong coupling between magnetic and electric properties, enabling wireless control of biological processes through electromagnetic stimulation, which paves the way for diverse biomedical applications. However, the surface functionalization of ME NPs and its impact on their structure, physical properties, and biological response remain largely unexplored. In this study, biocompatible citric acid (CA) and pectin (PEC) were employed to functionalize quasi-spherical ME core–shell NPs comprising a magnetic spinel MnFe2O4 core (∼23 nm) and a ferroelectric perovskite Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) shell (∼5 nm), synthesized using microwave-assisted hydrothermal processing. The surface functionalization led to the formation of covalent bonds between CA and metal ions of NPs via chelation. The surface functionalization with PEC increased ζ-potential values of ME NPs up to −46.2 ± 0.6 mV compared to CA (25.3 ± 1.0 mV). Both MFO@BCZT NPs with CA and PEC exhibited low coercivity values (69 ± 5 and 29 ± 2 Oe, respectively) with a pronounced specific saturation magnetization (6.1 ± 0.2 and 5.2 ± 0.2 emu/g, respectively). No effect of the BCZT shell with subsequent CA (746 ± 22 Oe) and PEC (754 ± 23 Oe) surface functionalizations on the anisotropy field of ME NPs was observed compared to the pristine MFO cores (754 ± 23 Oe). Both CA-/PEC-functionalized MFO@BCZT NPs exhibited ferroelectric behavior with robust piezoresponse (9.95 ± 1.36 and 10.24 ± 2.03 pm/V, respectively) and high ME response (81 × 104 and 80 × 104 mV·cm–1·Oe–1, respectively), comparable to the most frequently studied Co-based analogs. In vitro assays demonstrated the ability of the developed ME NPs to control calcium flux, which enables bidirectional regulation of cell proliferation. This work advances the development of efficient and biocompatible ME NPs with promising applications in the noninvasive and targeted stimulation of cell behavior.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.